Table 2. Basal parameters for the expanded model

Name	Value	Description
$v_{ m mp}$	5	Maximum rate of synthesis of per mRNA
$v_{ m mt}$	5	Maximum rate of synthesis of tim mRNA
$v_{ m mc}$	0.125	Maximum rate of synthesis of dClk mRNA
$k_{ m dmp}$	0.5	First-order rate constant for per mRNA degradation
$k_{ m dmt}$	0.5	First-order rate constant for tim mRNA degradation
$k_{ m dmc}$	0.5	First-order rate constant for dClk mRNA degradation
$v_{\rm p}$	2.5	Rate constant for translation of per mRNA
$v_{\rm t}$	2.5	Rate constant for translation of tim mRNA
$v_{\rm c}$	2.5	Rate constant for translation of dClk mRNA
$k_{\rm p1}$	50	V _{max} for monomeric PER phosphorylation
k_{p2}	0.15	V _{max} for dimeric PER phosphorylation
k_{p3}	0.5	First-order rate constant for proteolysis of PER
k_{t3}	0.5	First-order rate constant for proteolysis of TIM
$k_{ m dc}$	0.5	First-order rate constant for proteolysis of dCLK
k_{app}	50	Association rate const for PER-PER homodimerization
$k_{ m dpp}$	0.5	Dissociation rate const for PER-PER homodimers
$k_{ m apt}$	50	Association rate const for PER-TIM heterodimerization
$k_{ m dpt}$	0.5	Dissociation rate const for PER-TIM heterodimers
$k_{\rm acc}$	50	Association rate const for CYC-dCLK heterodimerization
$k_{ m dcc}$	0.5	Dissociation rate const for CYC-dCLK heterodimers
$k_{ m aitf}$	50	Association rate const for PER—CYC-dCLK complex
$k_{ m ditf}$	0.5	Dissociation rate const for PER—CYC-dCLK complex
$k_{\rm in}$	5	Nuclear import rate constant
$k_{ m out}$	0.5	Nuclear export rate constant
K_1	1	Michaelis constant for synthesis of per mRNA
K_2	1	Michaelis constant for synthesis of tim mRNA
m	7	Hill exponent of per and tim mRNA synthesis

Name	Value	Description
n	2	Hill exponent of dclk mRNA synthesis
Y _{tot}	10	Total concentration of CYCLE protein
$J_{ m p}$	0.05	Michaelis constant for protein kinase (DBT)
k	0.1	A constant for the activity of dCLK feedback loop