Table 3. Basal values of thermodynamic parameters

9	-9			
10	-10			
19	19			
13	12.3069			
0	0			
11	-11			
11	-11			
8	8.69	315		
13	-13			
12	12.6931			
7	-7			
10	10.6931			
10	-10			
6	6.69315			
10	-10			
6	-6			
10	-10			
7	5.39056			
TH				
ε		S		
4		-4		
3		-3		
11		-11		
6		-6		
13		-13		
	10 19 13 0 11 11 8 13 12 7 10 10 6 10 7 ε 4 3 11 6	10 -10 19 19 13 12.3 0 0 11 -11 11 -11 8 8.69 13 -13 12 12.6 7 -7 10 10.6 10 -10 6 6.69 10 -10 7 5.39 TH	10	

LG

par E s

J_p	5	2.00427		
P_{crit}	19	16.6974		
K_{eq}	7	12.2983		
with these changes for				
RS				
P_{crit}	19	18.4892		
K_{eq}	7	7		
μ	10	-10		
σ	-6.9315	-7.6246		

 $\Delta G=298\cdot R(\varepsilon-\theta s/298)$. The two thermodynamic parameters, ε and s (energy and entropy), determine the temperature dependence of rate constants according to Arrhenius' law, $k_i=k_i^o e^{s_i^\dagger}e^{-\varepsilon_i^\dagger\cdot 298/\theta}$, and the temperature dependence of equilibrium constants according to the Gibbs equation, $K_i=e^{s_i^o}e^{-\varepsilon_i^o\cdot 298/\theta}$. The energy parameters were chosen to temperature-compensate each model according to Ruoff's rule (see text). For rate constants, s_i^\dagger was (arbitrarily) set $=-\varepsilon_i^\dagger$, whereas for equilibrium constants $s_i^o=\varepsilon_i^o+\ln K_i(298)$. These energies and entropies of reaction depend on the biophysical properties of genetically encoded proteins and are therefore genetically modifiable. Test II models mutations by random perturbations of ε_i and s_i .