

Generate initial population P0 of size N using Latin hypercube sampling

Rank and sort P0 based on non-domination level

Create offspring population Q0 using k different algorithms. Each algorithm creates (N/k) points

Set t = 0, and T = maximum number of generations

while t < T do

Rt = Pt ∪Qt

Partition Rt into different fronts F1,F2,…

Set Pt+1 = ∅ and i = 1

while |Pt+1|< N do

Calculate crowding distance in Fi

if |Fi| + |Pt+1| = N then

Pt+1 = Pt+1 ∪ Fi

else

if |Fi| + |Pt+1| ≤ N then

Sort Fi members in order of decreasing crowding distance

Pt+1 = Pt+1 + the first (N - |Pt+1|) elements of Fi

end if

end if

i = i + 1

end while

Calculate crowded comparison operator ∀i ∈ Pt+1

Calculate the number of offspring points, each of the k algorithms contributed to Pt+1

Set j = 1

while j ≤ k do

For adaptive offspring creation, calculate

j = j + 1

end

Create Qt+1 by generating offspring points with each of the k individual algorithms

t = t + 1

end while

∑ = +++ ⋅=
k

w
w
t

w
t

j
t

j
t

j
t NPNPNN

1 111)/(/)/(

k
tP 1+

k
tN 1+

