
Supporting Text

Materials and methods

The multimethod evolutionary optimization algorithm called A Multi-ALgorithm,

Genetically Adaptive Multiobjective optimization method, or AMALGAM, outlined in

the paper, builds on two new concepts, multimethod search, and adaptive offspring

creation, to ensure a fast, reliable and computationally efficient solution to multiobjective

optimization problems. A flowchart with algorithmic steps is given in Fig. 4. Our

implementation of the method uses four commonly used algorithms: the Nondominated

Sorting Genetic Algorithm (1), Particle Swarm Optimization (2), Adaptive Metropolis

Search (3), and Differential Evolution (4) to find a well-distributed set of Pareto solutions

within a single optimization run. In the following we discuss why the individual

algorithms were selected, how they create offspring, and discuss the values of the

algorithmic parameters.

Nondominated Sorting Genetic Algorithm II (NSGA-II). The NSGA-II algorithm

developed by Deb et al. (1) has received the most attention of all evolutionary

multiobjective algorithms because of its simplicity and demonstrated superiority over

other existing methods. The algorithm uses the well-known genetic operators of

selection, crossover, and mutation to create a new population of points Qt+1 from an

existing population, Pt+1. We have implemented the latest version of the code as

presented on the website: http://www.iitk.ac.in/kangal/codes.shtml, and use the simulated

binary crossover (SBX) operator and polynomial mutation (5) to create offspring. In all

of our calculations, the crossover and mutation probability were set to 0.9 and 1/n,

respectively (where n denotes the number of parameters), whereas the values of the

distribution indices for crossover and mutation operators were set at 20. These values of

the algorithmic parameters are identical to those used in ref. 1.

Particle Swarm Optimization (PSO). Particle swarm optimization (PSO) is a

population-based stochastic optimization method whose development was inspired from

the flocking and swarm behavior of birds and insects. After its introduction in 1995 (6),

the method has gained rapid popularity in many fields of study. The method works with a

group of potential solutions, called particles, and searches for optimal solutions by

continuously modifying this population in subsequent generations. To start, the particles

are assigned a random location and velocity in the n-dimensional search space. After

initialization, each particle iteratively adjusts its position according to its own flying

experience, and according to the flying experience of all other particles, making use of

the best position encountered by itself, xbest and the entire population, pbest. In contrast to

the NSGA-II algorithm, PSO combines principles from local and global search to evolve

a population of points toward the Pareto-optimal front.

The reproductive operator for creating offspring from an existing population is (2,7):

i
t

i
t

i
t

i
t

i
t

ii
t

i
t rcrcw

11

best22best111)()(

++

+

+=

−+−+⋅=

vxx

xpxxvv

 (1)

where
i
tv and

i
tx represent the current velocity and location of a particle, w is the inertia

factor, c1 and c2 are weights reflecting the cognitive and social factors of the particle,

respectively, and r1 and r2 are uniform random numbers between 0 and 1. Based on

recommendations in previous work (7), the values for c1 and c2 were set to 1.5, and the

inertia weight was computed as: w = (1/2) + (1/2)u, where u is a uniform random number

between 0 and 1. To be able to escape from local optimal solutions, a turbulence factor is

added to the position of each of the individual particles (8):

i
tT

i
t

i
t R xxx +=+1 (2)

where RT ∈ [-1,1] is a uniform random variable.

An important issue that deserves further attention is how to derive xbest and pbest in our

multiobjective optimization. It seems natural to consider an approach in which the quality

of the solutions is judged based on the distance of their objective function values to the

Pareto-optimal solution set. However, because the location of the Pareto set is unknown,

we instead compute the Euclidean distance of all individual solutions to the best values of

the objective functions found so far, and store this information in D. After this, we sort D

in order of increasing Euclidean distance, and assign the parameter values corresponding

to D(1) to pbest and D(1…N) to xbest, where N denotes the population size.

Adaptive Metropolis Search (AMS). The evolutionary algorithms discussed above

employ a population-based search procedure to conduct an efficient search of the

parameter space. Despite their usefulness and strength, many if not all of these methods

exhibit genetic drift in which the majority of the population is inclined to converge

toward a single solution, thereby relinquishing occupations in other parts of the search

space. Adaptive Metropolis Search (AMS) is a Markov Chain Monte Carlo (MCMC)

sampler that actively prevents the search of becoming mired in the relatively small region

of a single best solution by adopting an evolutionary strategy that allows replacing

parents with offspring of lower fitness (9). While this is a much appreciated strength, the

AMS algorithm has another desirable property that is of more interest in the current

study: the sampler is very efficient in sampling from high-dimensional distributions. So,

if our multimethod evolutionary optimization has progressed toward the Pareto-optimal

front, then the AMS algorithm is able to rapidly explore the entire Pareto distribution,

successively visiting and generating a large number of solutions.

To create offspring, we implement the following reproductive operator:

),(2
1 tn

i
t

i
t cN ∑=+ xx (3)

where
i
tx and Σt represent the current location and covariance, respectively, of the best

nondominated set of solutions in population Pt. The jumprate parameter cn directly

determines the spread of the solutions around
i
tx . As a basic choice, the value of cn was

set to n/4.2 (10), where n represents the number of decision variables / parameters.

Differential Evolution (DE). While traditional evolutionary algorithms are well suited to

solve many difficult optimization problems, interactions among decision variables

(parameters) introduces another level of difficulty in the evolution. Previous work has

demonstrated the poor performance of a number of multiobjective evolutionary

optimization algorithms, including the NSGA-II, in finding Pareto solutions for rotated

problems exhibiting strong interdependencies between parameters (1). Rotated problems

typically require correlated, self-adapting mutation step sizes to make timely progress in

the optimization.

Differential evolution (DE) has been demonstrated to be able to cope with strong

correlation among decision variables, and exhibits rotationally invariant behavior (4). DE

is a population-based search algorithm that iteratively modifies an initial population of

points in subsequent generations. The method differs from other evolutionary algorithms

in the mutation and recombination phase. Unlike Genetic Algorithms and other

evolutionary strategies, DE uses weighted differences between solution vectors to create

new offspring solutions from the existing population:

)()(1
c
t

b
t

i
t

a
t

i
t

i
t FK xxxxxx −+−+=+ (4)

where K and F are scaling parameters controlling the level of combination between

individual solutions, and a, b, and c are randomly selected numbers from {1,2,…,N}; a ≠

b ≠ c ≠ i. The values of K and F were randomly drawn from a uniform distribution

between 0.2 - 0.6, and 0.6 - 1.0 respectively. This range encompasses the values of K =

0.4 and F = 0.8 recommended in ref. 11.

Performance Metrics. Two important goals in multiobjective evolutionary optimization

are to converge to the Pareto-optimal front, and to find multiple, well-distributed

solutions on this front. Here we implement the Y and ∆ performance metrics proposed by

Deb et al. (1,12) to reflect these goals.

The first metric Y measures the extent of convergence to a known set of Pareto-optimal

solutions. First, we generate H = 500 uniformly spaced solutions from the true Pareto-

optimal front in the objective space. For each individual Pareto solution generated with

the algorithm, we compute the minimum Euclidean distance to H. The average of these

distances represents the metric Y. Obviously, the closer the value of Y is to zero, the

closer the convergence is of the algorithm to the true Pareto-optimal front.

While Y directly measures convergence, the metric does not provide information about

the spread or diversity of the individual solutions along the front. This is another

important performance criterion for evolutionary algorithms for multiobjective

optimization problems. We therefore use another metric, denoted as ∆, to measure the

extent of spread achieved among the obtained solutions. To calculate this performance

metric, we start out by computing the Euclidean distance, di between two consecutive

nondominated solutions. We use these values to compute the average, d of these

distances. Thereafter, we fit a curve through the extreme ends of the true Pareto-optimal

objective front, and use this curve to extrapolate the generated nondominated solutions

with the algorithm to the extreme ends. After doing this, we compute the Euclidean

distance df and dl between the extrapolated extreme solutions and the boundary solutions

of the obtained nondominated set. We can now compute ∆ according to:

dLdd

dddd

lf

L

i
ilf

)1(
1

−++

−++
=∆

∑
=

 (5)

where L denotes the number of nondominated solutions with the algorithm. A good

distribution would make all distances di identical to d and would make df and dl = 0

resulting in a value of zero for the ∆ metric. For more information about these

performance metrics please refer to Deb et al. (1,12).

Relative Hypervolume Indicator. To quantify how many function evaluations are

needed for the individual algorithms to obtain nondominated solutions that are

sufficiently close to the true Pareto set, we use the relative hypervolume diagnostic

(12,13). This metric evaluates convergence and diversity within a single measure, and is

therefore one of the best unary measures available to diagnose whether the non-

dominated solution set derived with the algorithm is approximating the true Pareto set.

The metric computes the ratio between the objective space dominated by the obtained

non-dominated front, and the objective space dominated by the true Pareto set.

Mathematically, for each nondominated solution i ∈ Pt derived with an algorithm, a

hypercube zi is constructed with reference point W and the solution i as the diagonal

corners of the hypercube. Thereafter, a union of all hypercubes is found and its

hypervolume (HV) calculated by (13):

)(volume ||
1 i

P
i zUHV t
== (6)

This procedure is repeated for the true Pareto solutions (P*), and the relative hypervolume

(RHV) is then derived from:

)(
)(1 *PHV

PHVRHV t−=
 (7)

The closer the value of this metric is to zero, the closer the obtained non-dominated set is

to the true Pareto-optimal set.

1. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002) IEEE Trans. Evol. Comp. 6,

182-197.

2. Kennedy, J., Eberhart, R.C. & Shi, Y. (2001) Swarm Intelligence (Morgan Kaufmann,

CA).

3. Haario, H., Saksman, E. &. Tamminen, J. (2001) Bernoulli 7, 223 – 242.

4. Storn, R. & Price, K. (1997) J. Global Optimization, 11(4), 341-359.

5. Deb, K. & Agrawal, R.B. (1995) Complex Syst. 9, 115-148.

6. Kennedy, J. & Eberhart, R. (1995) Proc. Fourth IEEE Inter. Conf. on Neural Networks

(IEEE Service Center, Piscataway, NJ).

7. Hu, X., Eberhart, R. & Shi, Y. (2003) Proc. IEEE Swarm Intelligence Symposium, 193.

8. Parsopoulos, K.E. & Vrahatis, M.N. (2002) Proc. of the 2002 ACM Symp. Appl. Comp.

(ACM Press, Madrid, Spain).

9. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, H. & Teller, E.J. (1953)

J. Chem. Phys. 21(6), 1087-1091.

10. Gelman, A., Carlin, J.B., Stren, H.S. & Rubin, D.B. (1995) Bayesian data analysis

(Chapmann and Hall, New York, NJ).

11. Iorio, A. & Li, X. (2004) Report downloaded from:

http://goanna.cs.rmit.edu.au/∼iantony/papers/aus.pdf.

12. Deb, K. (2001) Multi-Objective Optimization Using Evolutionary Algorithms (Wiley,

New York).

13. Veldhuizen, D.V. (1999) Ph.D. Dissertation (Univ of Ohio, Dayton, OH).

