Table 9. Variogram model fit parameters for soil properties for the La Planada 25-ha plot

						Effective
Soil variable	Lambda	Trend order	Model	Nugget	Partial sill	range (m)
Al	0.5	2	-	-	-	-
Ca	0.0	1	-	-	-	-
Cu	0.5	2	Spherical	0.2186	0.1801	57.0
Fe	0.0	2	Spherical	0.1698	0.2203	49.5
K	0.0	1	Spherical	0.0861	0.0483	97.7
Mg	0.0	1	-	-	-	-
Mn	0.0	2	Spherical	3.0333	13.7642	159.5
P	0.5	2	Spherical	3.9675	4.6586	59.5
Zn	0.5	2	-	-	-	-
N	0.0	1	-	-	-	-
N_{\min}	0.5	2	-	-	-	-
рН	1.0	1	Exponential	0.0307	0.1041	155.8

For some soil variables, valid variogram models could not be fitted because of high variability at small distances (<10 m). In these cases, we simply carried out an inverse distance weighted interpolation, which means that the weights were inversely proportional to the squared distance to the prediction location. All other details are given in the legend to Table 8.