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Growth inhibition of the dnaA(Cs) mutant, which overinitiates chromosome replication, was shown to be
dependent upon the nucleoid protein H-NS. [3H]thymine incorporation experiments indicated that the absence
of H-NS inhibited overreplication by the dnaA(Cs) mutant. In addition, the temperature-sensitive phenotype
of a dnaA46 mutant was enhanced by disruption of H-NS. These observations suggest that H-NS directly or
indirectly facilitates the initiation of chromosome replication.

Prokaryotic histone-like proteins play important roles in var-
ious DNA transactions (6, 23, 27). In Escherichia coli, histone-
like proteins such as HU, IHF, and FIS are known to partici-
pate in chromosome replication.
Binding of HU to DNA is largely nonspecific and causes

bending of the DNA (10). IHF binds to DNA in a sequence-
specific manner (4). The origin for chromosome replication,
oriC, contains an IHF-binding site, and IHF binding to the site
causes DNA bending (28). In in vitro replication systems of
minichromosome (oriC plasmid) reconstituted with purified
proteins, HU is necessary for the process of initiation of rep-
lication (5, 25, 34), and IHF can substitute for HU in these
systems (12, 31). Mutant cells lacking both HU and IHF grow
slowly and take on a filamentous shape (14). Chromosome
replication in the double mutant is aberrant in that minichro-
mosomes are not maintained (15).
FIS also seems to be stimulatory for chromosome replication

(7, 9, 29). Although this protein is nonessential for cell growth,
the FIS-lacking mutant is far less competent for transforma-
tion of minichromosome than is the wild-type strain. FIS binds
to the oriC region in a sequence-specific manner and causes
bending of the oriC DNA.
H-NS, another histone-like factor, is an abundant DNA-

binding protein with about 20,000 molecules per cell (33). Like
HU, IHF, and FIS, H-NS is nonessential for cell growth, yet
simultaneous depletion of HU, IHF, and H-NS renders cells
inviable (38), which means that functional similarity probably
exists. On the other hand, overexpression of H-NS in vivo
causes extreme condensation of the chromosome, and such
being the case, this protein is likely to have a unique role in the
nucleoid structure (32). In the mutant lacking H-NS protein,
expression of .50 genes is altered, either increased or de-
creased (2, 37, 39). Furthermore, while this protein has a high
affinity to DNA, basically in a sequence-independent manner
(8), there is preferential binding to DNA with intrinsic curva-
ture (26, 36). Although the oriC region is known to contain a
curved site (22), and other histone-like factors are well char-
acterized, the role of H-NS in chromosome replication is
poorly understood.
In this study, to examine the role of H-NS in the initiation of

chromosome replication, we used dnaA mutants that affect

initiation activity of chromosome replication. DnaA protein,
encoded by the dnaA gene, binds to the oriC region, causes
local unwinding, and leads to initiation of synthesis of cDNA
strands (23). We found that disruption of the hns gene encod-
ing H-NS suppresses the growth defect and inhibits the exces-
sive replication seen in the dnaA(Cs) mutant (3, 21). In addi-
tion, growth of a temperature-sensitive dnaA mutant at a
semipermissive temperature was greatly inhibited by introduc-
tion of the hns mutation. We suggest that H-NS has an impor-
tant role in processes of initiation of chromosome replication
in vivo. This effect may derive from a direct interaction of
H-NS with the oriC region or may be an indirect consequence
with alterations in gene expression and nucleoid structure.
Suppression of dnaA(Cs) by an hns-null mutation. The

growth of the dnaA(Cs) mutant is inhibited at 398C or below
and is accompanied by an overinitiation of chromosome rep-
lication. We asked whether hns mutation would suppress the
growth defect of the dnaA(Cs) mutant (Table 1 and Fig. 1).
The Dhns::neo mutation was introduced into the dnaA(Cs)
strain (NA001) by P1 transduction; transductants appeared at
428C with a frequency similar to that seen when the parental
dnaA1 strain (KH5402-1) was the recipient (data not shown).
The resultant double mutant, MK19, and NA001 were grown
overnight in Luria-Bertani medium (30) supplemented with 50
mg of thymine per ml at 428C, diluted, and plated on the
Luria-Bertani agar plates supplemented similarly. Each plate
was incubated at 30, 35, 37, or 428C for 24 h. The dnaA(Cs) hns
double mutant grew well even at the low temperatures that
severely inhibited growth of the dnaA(Cs) mutant (Fig. 1). At
308C, the suppression seemed to be partial since colonies of
the double mutant were tiny.
Inhibition of overreplication by the hns mutation. Initiation

of chromosome replication is absolutely dependent on con-

* Corresponding author. Mailing address: Department of Microbiol-
ogy, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1
Maidashi, Higashi-ku, Fukuoka 812-82, Japan. Phone: 81-92-641-1151
(ext. 6188). Fax: 81-92-632-6648. Electronic mail address: katayama
@bisei.phar.kyushu-u.ac.jp.

TABLE 1. Bacterial strains

Straina Relevant genotype Source and/or reference

CSH4100 Dhns::neo T. Mizuno (37)
KH5402-1 thyA ilv 24
KA413 KH5402-1 ilv1 dnaA46 20
KA441 KH5402-1 dnaA(Cs) tna::Tn10 19
KA837 KA413 Dhns::neo This work
NA001 KA441 free of Tn10 1
MK19 NA001 Dhns::neo This work
MK21 KH5402-1 Dhns::neo This work

a All strains are derivatives of Escherichia coli K-12.
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comitant protein synthesis in the dnaA1 strain (35). Con-
versely, in the dnaA(Cs) mutant, initiation occurs repeatedly in
the presence of chloramphenicol (21), probably because the
activity of DnaA(Cs) protein is stable for a much longer time
than is that of the wild-type protein (16–19). We then asked
whether the lack of H-NS would affect the overreplication seen
in the dnaA(Cs) mutant (Fig. 2). Chromosome DNA in strains
NA001 [dnaA(Cs)] and MK19 [dnaA(Cs) hns] was wholly la-
belled by overnight incubation at 428C, in tryptone medium
(21) containing 50 mg (3 mCi) of [methyl-3H]thymine per ml.
The resultant cultures were diluted 100-fold in the same me-
dium as above and were grown exponentially at 428C. When
the A660 of the cultures reached 0.1, chloramphenicol (200
mg/ml) was added and the cultures were immediately shifted to

358C or subsequently kept at 428C. Samples (200 ml) were
withdrawn at various intervals, incubated at 08C in trichloro-
acetic acid (7%), and passed through GF/C filters, and radio-
activities in the insoluble materials were measured (20). As
expected, chromosome replication in the dnaA(Cs) hns double
mutant was significantly inhibited (Fig. 2). At 378C, consistent
results were obtained (data not shown). These data indicate
that occurrence of replicational initiation or synthesis of DNA
chain is inefficient in the double mutant, and thus H-NS seems
to have a role, direct or indirect, in facilitating chromosome
replication.
Growth inhibition of a temperature-sensitive dnaA mutant.

We further examined the role of H-NS for initiation with a
dnaA46 mutant. This dnaA46 mutant grows only at 388C or
below, and activity of the DnaA46 protein is temperature sen-
sitive (11). At 358C, activity of this protein for minichromo-
some replication in vitro is largely decreased, compared with
that at 308C, and even at 308C, the activity is only about 25%,
compared with that of the wild-type protein.
The hns mutation was introduced into a dnaA46 mutant by

P1 transduction, and transductants were obtained at 308C. The
transduction efficiency was similar to that seen when the pa-
rental dnaA1 strain was the recipient (data not shown). At
308C, a slight reduction in growth rate was observed for the
dnaA46 hns mutant, compared with that of the parental strains
(Table 2). Using cells grown at 308C, we determined CFU by
incubation at 30, 37, and 428C, for 24 h. The double mutant
showed severe growth inhibition at 378C whereas the dnaA46
mutant and the parental strains grew well at this temperature
(Table 2). Thus, H-NS is apparently a component required to
enhance the initiation of chromosome replication.
H-NS may modulate the expression of genes to facilitate the

process of the initiation. Alternatively, conformational change
in the nucleoid structure by H-NS may be related to the initi-
ation of chromosome replication. Although we did not observe
the effect of H-NS on the initiation in the dnaA1 background,
Kaidow et al. (13) recently found that, in a dnaA1 Dhns::neo
mutant, the ploidy of chromosome per cell decreases, and
anucleate cells are produced. The inhibited replication of the
chromosome may perhaps relate to this occurrence.
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