Example to show the procedures of calculating dynamic stability

Local dynamic stability was determined³ based on the maximum finite-time Lyapunov exponent, λ_{max} . The procedures to calculate the λ_{max} are shown below using Lorenz attractor as an example. The Lorenz equations are,

$$
\dot{x} = \sigma(y - x)
$$

\n
$$
\dot{y} = (-xz + \rho x - y)
$$

\n
$$
\dot{z} = (xy - \beta z)
$$

where σ = 16.0, ρ = 45.92 and β = 4.0 in this example. Figure 1 is the traditional Lorenz attractor with these parameters, initial conditions $[x,y,z] = [20,20,20]$ and time range from 0 to 10 seconds (timestep $= 1$ msec).

Norm of vectors:

It is unreasonable to assume that one can measure all of the dynamic states of the biomechanical system. Therefore, in this example we will demonstrate how a measurable subset of the dynamic states can be used to estimate the nonlinear behavior¹ The stability analyses

were performed on the Euclidean norm of the three variables determining the dynamics at each time interval,

$$
X(t) = \sqrt{x^2(t) + y^2(t) + z^2(t)}
$$

The norm of the example Lorenz attractor is illustrated in Figure 2 plotted *X(t)* as a function of time. This can be used to represent the measured experimental data.

Figure 2. Norm of the Lorenz attractor. This represents a sample measurable state.

Since the measured time-series data, $X(t)$, is a one dimensional column vectors it is necessary to reconstruct an n-dimensional state-space out of the data in order to accurately represent the nonlinear dynamics. One typical method of creating an n-dimensional state-space from scalar data is by method of delays (equation $2)^4$. Two critical parameters are necessary including the constant time delay T_d and the number of reconstructed embedding dimensions, n.

Time Delay:

The time delay T_d was estimated from the Average Mutual Information Function². T_d was taken as the first minimum of the Average Mutual Informatio(AMI) function. Figure 3

shows that in this case (norm of the Lorenz attractor) the minimum AMI occurred at 90 samples i.e. 0.09sec.

Embedding Dimension:

Embedding dimension was based on a global false nearest neighbor analysis. Figure 4 shows the percentage of false neighbors is minimum at embedding dimension $n = 3$. Therefore for this example the embedding dimension $n = 3$ was used to reconstruct the state-space.

Figure 4. Embedding dimension from false nearest neighbors analysis

Reconstructed State-Space:

Figure 5.A below is the reconstructed state space of $X(t)$ with an embedding dimension of $n = 3$. Figure 5.B shows the Euclidean distance between the nearest neighbors. The Euclidean distance between nearest neighbors, $d_i(t)$, was computed for each data point, i , in the reconstructed state-space. The nearest neighbor of a data point was found by selecting a point on a separate trajectory such that the distance between the two points was minimum compared to the distance between the reference point and any other point on a different trajectory in the statespace.

Figure 5. (A) Reconstructed state-space with 3 embedded dimensions. (B) Euclidean distance between nearest neighbors

Calculating Maximum Finite Time Lyapunov Exponent λmax :

The average logarithmic divergence of all pairs of nearest neighbors, *i* are calculated from the reconstructed state space. The maximum finite-time Lyapunov exponent, λ_{max} was calculated as the slope of the logarithm of average divergence across the span of o to 1 cycle as shown in the Figure 6.

Figure 6. Average logarithmic divergence vs. time

Reference List

- 1. F.Takens. Detecting Strange Attractors in Turbulence. In: L.-S.Young, ed. Dynamical Systems and Turbulence. New York: Springer, 1981:366-81.
- 2. Fraser AM and Swinney HL. Independent coordinates for strange attractors from mutual information. Phys.Rev.A 1986;33:1134-40.
- 3. Rosenstein MT, Collins JJ, and Deluca CJ. A Practical Method for Calculating Largest Lyapunov Exponents from Small Data Sets. Physica D 1993;65:117-34.
- 4. Rosenstein MT, Collins JJ, and Deluca CJ. Reconstruction Expansion As A Geometry-Based Framework for Choosing Proper Delay Times. Physica D 1994;73:82-98.