
Example to show the procedures of calculating dynamic stability 

Local dynamic stability was determined3 based on the maximum finite-time Lyapunov 

exponent, λmax. The procedures to calculate the λmax are shown below using Lorenz attractor as an 

example.  The Lorenz equations are, 
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where σ = 16.0, ρ = 45.92 and β = 4.0 in this example.  Figure 1 is the traditional Lorenz 

attractor with these parameters, initial conditions [x,y,z] = [20,20,20] and time range from 0 to 

10 seconds (timestep = 1 msec). 

 
Figure 1. Lorenz attractor 

Norm of vectors: 

It is unreasonable to assume that one can measure all of the dynamic states of the 

biomechanical system.  Therefore, in this example we will demonstrate how a measurable subset 

of the dynamic states can be used to estimate the nonlinear behavior1   The stability analyses 



were performed on the Euclidean norm of the three variables determining the dynamics at each 

time interval,  
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The norm of the example Lorenz attractor is illustrated in Figure 2 plotted X(t) as a function of 

time.  This can be used to represent the measured experimental data. 

 
Figure 2. Norm of the Lorenz attractor.  This represents a sample measurable state. 

 

Since the measured time-series data, X(t), is a one dimensional column vectors it is 

necessary to reconstruct an n-dimensional state-space out of the data in order to accurately 

represent the nonlinear dynamics.  One typical method of creating an n-dimensional state-space 

from scalar data is by method of delays (equation 2)4.  Two critical parameters are necessary 

including the constant time delay Td and the number of reconstructed embedding dimensions, n.   

Time Delay: 

The time delay Td was estimated from the Average Mutual Information Function2.  Td 

was taken as the first minimum of the Average Mutual Informatio(AMI) function.  Figure 3 



shows that in this case (norm of the Lorenz attractor) the minimum AMI occurred at 90 samples 

i.e. 0.09sec. 
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Figure 3. Time delay from AMI 

Embedding Dimension: 

Embedding dimension was based on a global false nearest neighbor analysis. Figure 4 

shows the percentage of false neighbors is minimum at embedding dimension n = 3. Therefore 

for this example the embedding dimension n = 3 was used to reconstruct the state-space.  
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Figure 4. Embedding dimension from false nearest neighbors analysis 

Reconstructed State-Space: 

Figure 5.A below is the reconstructed state space of X(t) with an embedding dimension 

of n = 3. Figure 5.B shows the Euclidean distance between the nearest neighbors. The Euclidean 



distance between nearest neighbors, di(t), was computed for each data point, i, in the 

reconstructed state-space. The nearest neighbor of a data point was found by selecting a point on 

a separate trajectory such that the distance between the two points was minimum compared to 

the distance between the reference point and any other point on a different trajectory in the state-

space.  

 
Figure 5. (A) Reconstructed state-space with 3 embedded dimensions. (B) Euclidean distance 

between nearest neighbors  

Calculating Maximum Finite Time Lyapunov Exponent λmax : 

The average logarithmic divergence of all pairs of nearest neighbors, i are calculated from the 

reconstructed state space. The maximum finite-time Lyapunov exponent, λmax was calculated as 



the slope of the logarithm of average divergence across the span of o to 1 cycle as shown in the 

Figure 6. 

 

Figure 6. Average logarithmic divergence vs. time 
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