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CcpA and HPr are presently the only two proteins implicated in Bacillus subtilis global carbon source
catabolite repression, and the ptsH1mutation in the gene for the HPr protein was reported to relieve catabolite
repression of several genes. However, a-amylase synthesis by B. subtilis SA003 containing the ptsH1 mutation
was repressed by glucose. Our results suggest HPr(Ser-P) may be involved in but is not required for catabolite
repression of a-amylase, indicating that HPr(Ser-P) is not the sole signaling molecule for CcpA-mediated
catabolite repression in B. subtilis.

Bacillus subtilis catabolite repression. Control of the B. sub-
tilis a-amylase gene (amyE) by rapidly metabolized carbon
sources is mediated by a mechanism of transcriptional catab-
olite repression (12). A disruption of the ccpA gene relieves
carbon catabolite repression of amyE and several other genes
(1, 7, 8). The ccpA gene encodes catabolite control protein A,
CcpA, which has been shown to interact specifically with a
catabolite responsive element (cre) (9, 13). Although the re-
pressor protein for catabolite repression, CcpA, along with its
operator, cre, has been found, the signaling mechanism by
which CcpA responds to changing levels of rapidly metabolized
carbon sources has remained elusive. A second trans-acting
mutation, ptsH1, has been implicated in the catabolite repres-
sion of gluconate kinase, glucitol dehydrogenase, mannitol-1-P
dehydrogenase, the mannitol-specific phosphotransferase sys-
tem permease, inositol dehydrogenase (4), and the levanase
(10) and xylA (2) operons. The ptsH1 mutation prevents the
ATP-dependent phosphorylation of the Ser-46 residue of the
phosphotransferase system phosphocarrier protein HPr (5) by
changing residue Ser-46 to Ala-46 (14). Phosphorylation of
HPr(His-15), required for phosphotransferase system-medi-
ated sugar uptake, is unaffected in the ptsH1 mutant (5). Both
the ptsH1 and ccpA::Tn917 strains appear to be relieved of
catabolite repression of several of the same genes (4). How-
ever, glycerol kinase and a-glucosidase synthesis remained sen-
sitive to catabolite repression in both a ptsH1 strain and a
ccpA::Tn917 strain (4). Due to the similarity in phenotypes, a
connection between activation of CcpA and HPr(Ser-P) was
inferred (4), and recent studies report that HPr(Ser-P) inter-
acts specifically with CcpA (3, 6). The apparent phenotypic
similarity of ptsH1 and ccpA along with biochemical evidence
has led to the conclusion that HPr(Ser-P) is an effector of
CcpA. However, this has not been proven conclusively and
certainly not for all genes subject to regulation by CcpA.
Bacterial strains, growth conditions, and assays. The B.

subtilis strains used in this study were wild-type B. subtilis 168
(trpC2; laboratory stock) and HPr mutant strain SA003 (sacB9-
lacZ trpC2 ptsH1) (4). Strains were grown in nutrient sporula-
tion medium (15), and growth was monitored using a Klett-
Summerson colorimeter (no. 66 red filter). The cultures were
divided into two flasks during midexponential growth. A total
of 9.6 ml of culture was added to each flask, one containing 0.4

ml of H2O and the other containing 0.4 ml of 50% glucose for
a final concentration of 2% glucose. Samples were removed for
a-amylase assays at 30 min before to 5 h after the cultures were
divided. Culture supernatants were assayed for a-amylase ac-
tivity as described previously (11).
Effect of HPr on catabolite repression of a-amylase. It has

previously been demonstrated that the a-amylase cre and
CcpA are essential for glucose repression of a-amylase pro-
duction. However, the HPr ptsH1 mutation did not prevent
glucose repression of a-amylase production. As seen in Fig. 1,
the addition of 2% glucose caused repression of a-amylase
production in both B. subtilis 168 and in the HPr mutant strain.
A lower concentration of glucose (0.5%) was also used with
identical results to those obtained with 2% glucose (data not
shown). The inability of the ptsH1 mutation to relieve catabo-
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FIG. 1. Catabolite repression of a-amylase synthesis by glucose in B. subtilis
168 (circles) and SA003 (squares) grown in nutrient sporulation medium. B.
subtilis cultures were grown to midexponential growth, indicated by arrows, and
split into two flasks. The flasks contained either 0.4 ml of H2O as a control (filled
symbols) or 0.4 ml of 50% glucose to a final concentration of 2% (open symbols).
The left panels are growth of the cultures reported in Klett units and the right
panels are time courses of a-amylase specific activity. The data are averages of 12
a-amylase assays performed on culture supernatants from two independent
growth curves.
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lite repression of the a-amylase gene, a gene repressed by
CcpA at a cre element, indicates that another mechanism for
activation of CcpA is necessary.
Models of catabolite repression. The ability of CcpA to

repress a host of genes appears to be more complicated than
can be explained by a model involving only one effector mol-
ecule. Control of CcpA DNA-binding activity by more than
one mechanism may permit discrimination between different
cre elements and hence would form a plausible explanation for
data suggesting that HPr(Ser-P) is necessary for catabolite
repression of some genes and not required for others. For
example, CcpA could interact with HPr to regulate one set of
genes while interacting with another effector to regulate a
second set of genes that includes the a-amylase gene. Alter-
natively, the regulation by CcpA of a set of genes may require
HPr(Ser-P) plus a second factor, possibly an effector molecule,
while other genes only require the second factor. If one of
these models is correct, one should be able to find predictable
differences in the CcpA target sites of genes that require
CcpA-HPr(Ser-P) complexes and those that interact with other
CcpA-effector complexes. Several mechanisms can be pro-
posed for the activation of CcpA; however, it seems likely that
other factors besides HPr(Ser-P) can activate CcpA in B. sub-
tilis catabolite repression.
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