Regulation of las and rhl Quorum Sensing in Pseudomonas aeruginosa EVERETT C. PESCI, JAMES P. PEARSON, PATRICK C. SEED, AND BARBARA H. IGLEWSKI* Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642 Received 6 November 1996/Accepted 11 March 1997 The production of several virulence factors by *Pseudomonas aeruginosa* is controlled according to cell density through two quorum-sensing systems, *las* and *rhl*. The *las* system is comprised of the transcriptional activator protein LasR and of LasI, which directs the synthesis of the autoinducer PAI-1. Similarly, the *rhl* system consists of the transcriptional activator protein RhIR and of RhII, which directs synthesis of the autoinducer PAI-2 (formerly referred to as factor 2). To study the interrelation between the two *P. aeruginosa* quorum-sensing systems, we fused a *lacZ* reporter gene to *lasR*, *rhlR*, and *rhlA* and monitored expression of these three genes under various conditions. Our data indicate that *lasR* and *rhlR* are expressed in a growth-dependent manner, with activation of each gene occurring during the last half of log-phase growth. We also show that the *las* quorum-sensing system controls the *rhl* quorum-sensing system in two ways. First, we found that LasR and PAI-1 activated *rhlR* transcription. Second, we showed that PAI-1 blocked PAI-2 from binding to RhIR, thereby inhibiting the expression of *rhlA*. Our data thus indicate that the *las* system exerts two levels of control on RhIR, transcriptional and posttranslational. At least two complete quorum-sensing systems, las and rhl, are present in the opportunistic human pathogen *Pseudomonas* aeruginosa. These systems are known to control the expression of a number of virulence genes in response to bacterial cell density (5), but their specific effect on each other has not been studied. The *las* and *rhl* systems each contain homologs of the LuxR and LuxI proteins of the prototypic *lux* quorum-sensing system from Vibrio fischeri (see reference 5 for a review). The las system consists of the transcriptional activator protein LasR and of LasI, which directs the synthesis of the autoinducer PAI-1 [N-(3-oxododecanoyl)-L-homoserine lactone] (6, 20, 22). This system has been shown to activate the expression of lasI, lasB, lasA, apr, and toxA (7, 20, 27, 30). Similarly, the rhl system consists of the transcriptional activator protein RhlR and RhII, which directs the synthesis of the autoinducer PAI-2 (N-butyryl-L-homoserine lactone; formerly known as factor 2) (16, 17, 23). This system controls the expression of rhlI and rhlAB, which codes for a rhamnosyltransferase required for rhamnolipid (heat-stabile hemolysin) production (11, 15–17). It has also been reported that *rhl* quorum sensing activates the expression of rpoS, a stationary-phase sigma factor that controls numerous genes (11). The general model for quorum sensing (5) begins with the autoinducer, which is a diffusible molecule, being produced at a basal level at low cell densities. The autoinducer concentration then increases with cell density until a threshold concentration is reached. At this concentration, the autoinducer binds to its specific target protein (i.e., LasR or RhlR), and the autoinducer-protein complex activates genes that it controls. Experiments on the interchangeability of the *las* and *rhl* system components showed that they were not compatible, in that PAI-2 does not activate LasR nor does PAI-1 activate RhlR in *Escherichia coli* (23, 24). However, it was apparent that these two systems were not completely independent of one another. It was first indicated that the *las* and *rhl* systems may be linked when Pearson et al. (23) showed that PAI-2 was poorly expressed in a *P. aeruginosa lasR* strain, which led to the conclusion that LasR may control PAI-2 production. After this, it was reported that the *rhl* system was working in tandem with the *las* system to control the production of elastase in *P. aeruginosa* (3, 17). While this paper was being written, an article was published that showed, as we do below, that *rhlR* transcription was controlled by LasR-PAI-1 (11). For our study, we sought to determine the effect, if any, of the *las* and *rhl* systems on each other. We report here that the *las* quorumsensing system controls RhIR, the transcriptional activator of the *rhl* system, at both the transcriptional and posttranslational levels. In addition, we show that *lasR* and *rhlR* are expressed in a growth-dependent manner, with each gene being activated during the second half of log-phase growth. ## MATERIALS AND METHODS Bacterial strains and plasmids. Bacterial strains and plasmids used in this study are listed in Table 1. Plasmid pECP60 was constructed by ligating the 623-bp, rhlA promoter-containing (24) BamHI/BglII fragment of pUO101 into the BamHI site of pSW205 to create a rhlA'-lacZ translational fusion. Plasmid pUO101 was kindly provided by U. Ochsner and carries a 5.8-kb HindIII/EcoRI fragment of P. aeruginosa PG201 DNA which contains the entire rhl regulon (rhlABRI). Transcriptional fusions of lasR'-lacZ and rhlR'-lacZ were constructed in the vector pLP170. A lasR promoter-containing fragment was generated through PCR, using primers that contained an EcoRI or BamHI site. The 3' end of the primer containing the EcoRI site (5'-GCGTGGGGAATTCCGCGTGC GCCGCGC-3') corresponded to the nucleotide 395 bp upstream from the lasR start codon. The 3' end of the primer containing the BamHI site (5'-CCGTCG GATCCACCCGCGCGTAGCC-3') corresponded to the nucleotide 197 bp downstream from the lasR start codon. The transcriptional start sites of lasR have been mapped to nucleotides 201 and 231 bp upstream from the lasR start codon (1), which ensured that the *lasR* regulatory region is contained on the sequence used to make the lasR'-lacZ fusion. The PCR product obtained by the use of a lasR template was digested with EcoRI and BamHI and ligated into the transcriptional fusion vector pTL61T, which had been digested with the same enzymes. The resulting lasR'-lacZ transcriptional fusion was released from this vector by digestion with EcoRI and EcoRV and ligated into pLP170 that had been digested with the same enzymes to yield pPCS1001. The PCR-generated fragment was sequenced to ensure that mutations had not been incorporated. The rhlR promoter-containing fragment was released from pUO101 by using the enzymes PstI and BamHI and was ligated into PstI/BamHI-digested pTL61T. The recognition sites for the enzymes PstI and BamHI are located at nucleotides -500 and +242 relative the *rhlR* start codon. Through deletion analysis of the DNA upstream from rhlR, Ochsner et al. (16) mapped the promoter region of rhlR to the region within 80 nucleotides upstream from the rhlR start codon. This ^{*} Corresponding author. Mailing address: Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Ave.—Box 672, Rochester, NY 14642. Phone: (716) 275-3402. Fax: (716) 473-9573. E-mail: BIGL@MEDINFO.ROCHESTER.EDU. 3128 PESCI ET AL. J. BACTERIOL. TABLE 1. Strains and plasmids | Strain or plasmid | Relevant genotype or phenotype | Reference | |-------------------|--|------------| | E. coli | | | | DH5α | F'/endA1 hsdR17 supE44 thi-1 recA1 gyrA
relA1 Δ(lacZYA-argF) U169 deoR [φ80
dlacZΔM15 recA1] | 31 | | JM109 | F' $traD36\ lacI^4\ \Delta(lacZ)M15\ proA^+B^+/el4^-\ \Delta(lac-proAB)\ thi\ gyrA96\ endA1\ hsdR17\ relA1\ supE44\ recA1$ | 32 | | P. aeruginosa | _ | | | PAO1 | Wild type | 9 | | PDO100 | ΔrhlI::Tn501-2 strain PAO1 derivative | 3 | | PAO-JP2 | $\Delta lasI$::Tet, $\Delta rhlI$::Tn501-2 strain PAO1 derivative | 24 | | Plasmids | | | | pSW205 | Translational <i>lacZ</i> fusion vector that contains an origin of replication for both <i>E. coli</i> and <i>P. aeruginosa</i> and <i>bla</i> (Amp) | 7 | | pECP60 | pSW205 containing an <i>rhlA'-lacZ</i> translational fusion | This study | | pEX1 | Expression vector for constructing <i>tacp</i> fusions; carries <i>lacI</i> ^q and <i>bla</i> | 19 | | pEX1.8 | pEX1 containing a <i>P. aeruginosa</i> origin of replication | 24 | | pJPP8 | pEX1.8 containing tacp-rhlR | 24 | | pECP61.5 | pJPP8 containing the <i>rhlA'-lacZ</i> fusion from pECP60 | 24 | | pACYC184 | General-purpose cloning vector, Tet Chlor | 4 | | pPCS11 | tacp-lasR on pACYC184 | 26 | | pLP170 | lacZ transcriptional fusion vector that contains an origin of replication for both P. aeruginosa and E. coli and bla | 25 | | pPCS1001 | pLP170 containing a <i>lasR'-lacZ</i> transcriptional fusion | This study | | pPCS1002 | pLP170 containing a <i>rhlR'-lacZ</i> transcriptional fusion | This study | | pGroESL | pEX1.8 containing lacp-groESL | 24 | | pTL61T | lacZ transcriptional fusion vector | 12 | confirmed that the sequence used to construct the rhlR'-lacZ fusion contains the rhlR promoter. The rhlR'-lacZ transcriptional fusion was released by digestion with EcoRI and EcoRV and ligated into pLP170 digested with the same enzymes to yield pPCS1002. Nucleotide fusions were specifically verified by sequencing to ensure integrity of the fusion junction. DNA techniques. Standard techniques were used for DNA manipulation (13). PCR was performed using *Taq* polymerase (Gibco/BRL, Gaithersburg, Md.). Oligonucleotides used for PCR were synthesized by G. Kampo and J. Maniloff at the Core Nucleic Acid Laboratory at the University of Rochester Medical Center. Restriction endonucleases were purchased from Gibco/BRL or New England Biolabs (Beverly, Mass.). Plasmids were introduced into *E. coli* and *P. aeruginosa* by transformation (13) or electroporation (28), respectively. *E. coli* containing plasmid DNA was selected on L-agar (13) plates containing ampicillin (100 μg/ml) and/or chloramphenicol (30 μg/ml) when appropriate. *P. aeruginosa* containing plasmid DNA was selected on peptone tryptic soy broth (PTSB) (18) agar plates containing carbenicillin (200 μg/ml). Nucleotide sequencing was accomplished by using the Sequenase kit (U.S. Biochemical Corp., Cleveland, Ohio) and [α-35S|dATP (NEN Research Products, Boston, Mass.). **β-Gal activity assays.** β-Galactosidase (β-Gal) activity was assayed according to Miller (14), and the mean \pm 1 standard deviation (SD) was reported. Media and culture conditions for β -Gal activity assays. (i) P. aeruginosa. P. aeruginosa cultures were grown for 18 h at 37°C with shaking in PTSB (supplemented with 200 μg of carbenicillin per ml when appropriate) and subcultured into the same medium to a starting A_{660} of 0.05. When indicated, PAI-1 and/or PAI-2 was added at the start of subculturing to achieve a final concentration of 1 μM . For Fig. 2, cultures were assayed for β -Gal activity throughout the growth cycle and growth was monitored by measuring cell density (absorbance at 660 nM). For Fig. 1 and Fig. 3, cultures were assayed for β -Gal activity after 7.5 h of growth. This time point was chosen because it was the time point when all cultures were always at approximately the same cell density (see Fig. 2A) and therefore the assays would be comparable. (ii) E. coli. E. coli cultures were grown in A medium (13) supplemented with 0.4% glucose, 1 mM MgSO $_4$, and 0.05% yeast extract. When appropriate, 100 μg of ampicillin per ml and/or 30 µg of chloramphenicol per ml was added to the medium. Cultures were shaken at 37°C for 18 h and subcultured to a starting A_{600} of 0.08. At an A_{600} of 0.3, autoinducers were added where indicated. IPTG (5-bromo-4-indole-3-chloro-isopropyl- β -D-galactopyranoside) was also added at this time to a final concentration of 1 mM for Fig. 4. For Fig. 6., IPTG was omitted because the *tac* promoter controlling rhlR allows enough RhIR to be produced to activate rhlA in the presence of PAI-2. When IPTG was added, the massive overexpression of RhIR lessened the effect shown here (data not shown). After additions were made to E. coli cultures, growth was continued for 1.5 h, at which time assays for β -Gal activity were completed. **PAI-2 binding assays.** Binding assays followed the method of Hanzelka and Greenberg (8) with the following modifications. *E. coli* DH5 α cultures containing two plasmids, pJPP8 and pGroESL, were grown (starting A_{600} of 0.5) for 2 h in Luria-Bertani (LB) medium (containing 100 μ g of ampicillin per ml and 30 μ g of chloramphenicol per ml) at 37°C with shaking in the presence of 1 mM IPTG. Plasmid pGroESL was included because GroES and GroEL were shown to enhance binding of the *Vibrio* autoinducer VAI-1 to LuxR (8). Culture aliquots were preincubated (25°C, 30 min) in the presence or absence of PAI-2 or PAI-1 (1 or 10 μ M) followed by a 30-min incubation in the presence of 250 nM [³H]PAI-2 (24). Radioactivity remaining with the cells was determined as described previously (8). All binding experiments were completed twice in duplicate. We have shown elsewhere that *E. coli* cells which contained pJPP8 and pGroESL bound approximately 20-fold-more [³H]PAI-2 than cells which contained pEX1.8 (control vector) and pGroESL (24). ## RESULTS AND DISCUSSION The las quorum-sensing system affects the rhl quorum-sensing system. It became clear that the two quorum-sensing systems of P. aeruginosa were communicating when we studied the effects of exogenous autoinducers on rhlA expression in cells grown in PTSB medium. It has been shown that PAI-2 and RhlR are required for the activation of rhlA in E. coli (24) and that rhlR is required for rhamnolipid production in P. aeruginosa (16). To study rhlA expression in P. aeruginosa, β-Gal activity was assayed to monitor activation of an rhlA'lacZ fusion in early-stationary-phase cultures of P. aeruginosa PDO100 rhlI(pECP60) and PAO-JP2 rhlI lasI(pECP60) (Fig. 1). As expected, strain PDO100(pECP60) exhibited rhlA activation only when exogenous PAI-2 was provided. However, in strain PAO-JP2(pECP60), maximal rhlA activation required both PAI-2 and PAI-1. The addition of PAI-2 alone allowed only 8% (100 Miller units) of the rhlA activation seen when both PAI-1 and PAI-2 were added (1,212 Miller units) (Fig. 1). We have also qualitatively shown that a P. aeruginosa lasI mutant strain does not make rhamnolipid (24). It was obvious FIG. 1. Autoinducer requirements for *rhlA* activation in *P. aeruginosa. P. aeruginosa* PAO1 derivatives PDO100 (*rhlI*) and PAO-JP2 (*lasI rhlI*) containing pECP60 were grown as described in Materials and Methods in the presence of the indicated autoinducer. During the early stationary phase of growth, β -Gal activity was assayed. Data represent the means of duplicate β -Gal assays from four separate experiments, and activity is expressed as Miller units \pm SDⁿ⁻¹. (A) Strain PDO100(pECP60); (B) strain PAO-JP2(pECP60). FIG. 2. Time course of *lasR* and *rhlR* expression in strains PAO1 (wild type) and PAO-JP2 (*lasI rhlI*). Cultures containing plasmids with *lasR'-lacZ* and *rhlR'-lacZ* transcriptional fusions were grown as described in Materials and Methods, and aliquots were taken throughout growth and assayed for cell density (A, absorbance at 660 mM; B, β-Gal activity). (A) Curves represent the averages of at least three separate experiments. Closed circles indicate strain PAO1 containing either pPCS1001 or pPCS1002. Closed triangles indicate strain PAO-JP2 containing either pPCS1001 or pPCS1002. The A_{660} measurements for a strain carrying either pPCS1001 or pPCS1002 were averaged because growth curves for an individual strain were superimposable regardless of which plasmid was present. (B) Each curve is the result of at least three separate growth curve experiments with duplicate β-Gal assays performed on each aliquot. Activity is expressed as Miller units \pm SDⁿ⁻¹. \bigcirc , strain PAO1(pPCS1001); \triangle , strain PAO-JP2(pPCS1001); \triangle , strain PAO-JP2(pPCS1001). from these data that rhlA expression was dependent on components of both the rhl and las quorum-sensing systems. This result was a surprise because we had expected that activation of rhlA in P. aeruginosa would occur in the presence of PAI-2 and RhIR as it had in E. coli (24). However, in our E. coli experiments, rhlR expression was controlled by the inducible tac promoter instead of its own promoter, thus eliminating the wild-type regulatory sequences upstream from rhlR. This led us to speculate that perhaps RhlR was not expressed in strain PAO-JP2 and that rhlR expression may be regulated through quorum sensing. To test this theory, we examined the activation of our rhlR'-lacZ and lasR'-lacZ transcriptional fusions in P. aeruginosa strains PAO1 and PAO-JP2 grown in PTSB medium (Fig. 2). We feel that it is very important to study quorum sensing in a well-defined *P. aeruginosa* mutant strain in which a critical portion of each quorum-sensing system is absent. The use of strain PAO-JP2 lasI rhlI allowed us to test our fusions in the absence of the two known P. aeruginosa autoinducers or in the presence of exogenously added autoinducers (see below), thus ensuring that our data did not result from partial effects caused by interference between the *las* and *rhl* systems. This is in contrast to a similar study by Latifi et al. (11) in which they used strain PAO1 with a lask mutation and the undefined mutant strain PAN067 to test the effects of quorum sensing on lasR and rhlR expression. In our experiments, we found that activation of rhlR and lasR in strain PAO1 was very similar (Fig. 2B), with both genes exhibiting a basal level of transcription until they became activated in the last half of log-phase growth (culture A_{660} , >1.0) (Fig. 2A). This result differs significantly from that of Latifi et al. (11), who report that lasR is expressed constitutively in P. aeruginosa. We found that rhlR was also expressed in a growth-dependent manner (Fig. 2B), while they (11) report that expression is constant until stationary phase. The reason for this conflict is not apparent. It could result from the use of different media (PTSB for this work and LB medium by Latifi et al. [11]), from differences between the specific P. aeruginosa PAO1 strains used by the two laboratories, or from an unknown factor. In the lasI rhlI mutant (strain PAO-JP2), basal lasR transcription was unaffected and maximal expression was decreased by approximately 50% compared to that seen in the parental strain, PAO1 (Fig. 2B). However, rhlR transcription was critically affected in the absence of both PAI-1 and PAI-2. In strain PAO1, both basal and maximum levels of rhlR transcription were approximately fivefold higher than the levels seen in strain PAO-JP2 (Fig. 2B). These results indicate that even the basal levels of rhlR, but not those of lasR, are dependent on the presence of PAI-1 and/or PAI-2. These data also show that both lasR and rhlR are expressed to at least some extent in the absence of autoinducers, indicating that these genes are controlled by more than just quorum sensing. Most importantly, these data showed that during all phases of P. aeruginosa growth, maximum rhlR expression was dependent on PAI-1 and/or PAI-2, indicating that rhlR was controlled by one or both quorum-sensing systems. Transcription of *rhlR* is positively regulated by LasR-PAI. To determine which quorum-sensing system controlled *rhlR*, PAI-1 and/or PAI-2 was added exogenously to cultures of strain PAO-JP2 containing pPCS1001 (*lasR'-lacZ*) or pPCS1002 (*rhlR'-lacZ*) (Fig. 3). Interestingly, these data showed that PAI-2 had no effect on *rhlR* or *lasR* transcription, but PAI-1 alone was capable of restoring expression of both gene fusions to normal levels (Fig. 3). The ability of PAI-1 to restore full *rhlR* expression to strain PAO-JP2(pPCS1002) suggests that the *las* quorum-sensing system controls *rhlR* transcription. In this scenario, the *rhl* system indirectly responds to cell density through the *las* system and only the *las* system directly "senses a quorum." To ensure that the affect of PAI-1 on *rhlR* required LasR, we determined the effects of LasR and PAI-1 on *rhlR'-lacZ* expression in *E. coli* (Fig. 4). In the absence of LasR or PAI-1, *rhlR* expression remained at background level (Fig. 4). In the presence of both LasR and PAI-1, *rhlR* expression increased 3130 PESCI ET AL. J. BACTERIOL. FIG. 3. Autoinducer effects on *lasR* and *rhlR* expression. *P. aeruginosa* PAO-JP2 (*lasI rhlI*) containing a plasmid with either a *lasR'-lacZ* or *rhlR'-lacZ* transcriptional fusion was grown in the presence of the indicated autoinducers described in Materials and Methods. Aliquots were taken during early-stationary-phase growth and assayed for β-Gal activity. The control plasmid, pLP170, containing a promoterless *lacZ* gene always yielded less than 2,500 units of β-Gal activity when carried in strain PAO-JP2 (data not shown). Data represent the means of duplicate β-Gal activity assays from three separate experiments, and activity is expressed as Miller units \pm SDⁿ⁻¹. (A) Strain PAO-JP2(pPCS1001); (B) strain PAO-JP2(pPCS1002). approximately threefold (to the same level as that seen for our lasR'-lacZ fusion in E. coli) (Fig. 4), indicating that rhlR was directly controlled by LasR and PAI-1. (Experiments in which we tested the ability of RhIR to activate lasR and rhIR in the presence of 50 nM, 1 µM, and 10 µM PAI-1 or PAI-2 showed no activation of either gene in E. coli [data not shown].) Furthermore, the expression of lasR was unaffected by the presence of LasR and PAI-1 in E. coli (Fig. 4). However, it is apparent that in P. aeruginosa PAO-JP2, PAI-1 caused a slight increase (approximately twofold) in expression from the lasR'lacZ fusion (Fig. 2B and 3). This distinct difference in lasR expression between P. aeruginosa and E. coli makes it difficult to determine the role of autoregulation in lasR expression. It has also been reported that *lasR* transcription was unaffected in a strain PAO1 lasR mutant but negatively affected by the presence of LasR in E. coli (11), phenomena which we have also observed (2). Additionally, we have shown elsewhere that lasR transcription requires vfr (1), which encodes a homolog of the E. coli Cap protein. Taken together, these data do not lead to a conclusion concerning the effect of quorum sensing on LasR but suggest that lasR expression is complex and controlled by multiple factors. The data in Fig. 2, 3, and 4 show that the *las* quorum-sensing system controls *rhlR* at the transcriptional level, providing direct evidence of communication between two quorum-sensing systems of the same organism. This role for LasR-PAI-1 adds to the importance of the complex as a global regulator of *P. aeruginosa* virulence. In addition, the control of *rhlR* by the *las* system implies that the *las* system is activated before the *rhl* system, indicating that, as suggested by Latifi et al. (11), a hierarchy exists between the two systems where *las* quorum sensing is dominant. This conclusion appears to be in direct conflict with earlier reports from our laboratory that indicated *lasR* could require a factor other than PAI-1 (possibly PAI-2) to function properly (20, 23). Subsequent investigation has shown that these conclusions were invalid because two *P*. aeruginosa strains, PAO-R1(pTS400-1.7) and PAO-R1(pTS400), used to produce data for those papers contained improper plasmids. Often, gene control through quorum sensing is associated with the presence of a "lux box" consensus sequence which is usually found very close to, or overlapping with, the promoter of a quorum-sensing-controlled gene (5). Upon inspection, we discovered that the DNA sequence upstream from rhlR contains a potential lux box consensus sequence centered 81 nucleotides upstream from the rhlR translational start site. This sequence (5'-TTTTGCCGTATCGGCAAGGC-3') matched 10 of 20 nucleotides with the V. fischeri lux box and 11 of 20 nucleotides with OP1 of lasB from P. aeruginosa (26). The importance of these sequences in quorum sensing was emphasized when Stevens et al. (29) showed that the lux box of V. fischeri specifically associates with the DNA-binding domain of LuxR and Rust et al. (26) demonstrated that OP1 of lasB is important for LasR-PAI-1-mediated activation of lasB. Additionally, Ochsner et al. (16) mapped the rhlR promoter region by deletion analysis of the DNA upstream from rhlR and identified a potential rhlR promoter that begins only 7 nucleotides from the 3' end of the possible *rhlR lux* box. The discovery and location of this sequence upstream from rhlR lead us to speculate that it may be involved in the control of rhlR by LasR-PAI-1. RhIR activity is also controlled at the posttranslational level by the *las* quorum-sensing system. To further explore the control of *rhl* by *las*, we tested the specificity of RhIR-autoinducer interactions. Tritium-labeled PAI-2 ([³H]PAI-2) was used to develop a binding assay (see Materials and Methods) where *E. coli* cells overexpressing RhIR and GroES and GroEL were pretreated with unlabeled PAI-2 or PAI-1 in an amount either 4- or 40-fold in excess of the [³H]PAI-2 (250 nM). After pretreatment with 4- or 40-fold-excess PAI-2, [³H]PAI-2 binding decreased 64 and 89%, respectively (Fig. 5), indicating that unlabeled PAI-2 specifically competed (as expected) with [³H]PAI-2 for binding to cells expressing RhIR. Interestingly, pretreatment with 4- or 40-fold-excess unlabeled PAI-1 decreased [³H]PAI-2 binding to cells expressing RhIR by 86 and FIG. 4. Effects of LasR and PAI-1 on *lasR* and *rhlR* expression in *E. coli*. Cultures of *E. coli* JM109 containing two plasmids were grown in the presence or absence of PAI-1 and assayed for β -Gal activity as described in Materials and Methods. Data represent the means of duplicate β -Gal activity assays from three separate experiments, and activity is expressed as Miller units \pm SD^{n-1}. "With LasR," containing plasmid pPCS11; "Without LasR," containing plasmid pACYC184. The second plasmid contained by each culture is indicated as follows: solid bars, pPCS1001; cross-hatched bars, pPCS1002; open bars, pLP170. FIG. 5. PAI-1 blocks the interaction of PAI-2 and RhlR. Cells overexpressing RhlR were pretreated with the indicated unlabelled autoinducer in an amount either fourfold ($4\times$) or 40-fold ($40\times$) in excess of the amount of [3 H]PAI-2 added. Results are expressed as the percentage's of cell-bound radioactivity relative to that bound to cells not pretreated before the addition of [3 H]PAI-2. 94%, respectively (Fig. 5). This result was quite surprising and showed that PAI-1 also competed with PAI-2 for binding to cells expressing RhlR. We have shown elsewhere that PAI-1 and RhlR will not activate rhlA and that PAI-2 will not compete with PAI-1 for binding to LasR (21, 24). With this in mind, we speculated that perhaps PAI-1 blocked RhlR activity in vivo. To test this hypothesis, we assayed rhlA expression in the presence of RhlR, 1 μ M PAI-2, and various concentrations of PAI-1 (Fig. 6). The ability of RhlR and PAI-2 to activate FIG. 6. PAI-1 blocks PAI-2 activity in *E. coli*. β -Gal activity expressed from an *rhlA'-lacZ* fusion was assayed from cultures of *E. coli* DH5 α (pECP61.5) in the presence of 1 μ M PAI-2 and various concentrations of PAI-1 as indicated. Cultures were grown as described in Materials and Methods. The data are the means of duplicate β -Gal assays from four separate experiments and are expressed as percentages of the activity from a culture that received only 1 μ M PAI-2 (100% = 86 Miller units). \bullet , with PAI-2; \bigcirc , without PAI-2. FIG. 7. Model of the *P. aeruginosa* quorum-sensing circuitry. LasR, RhlR, PAI-1, and PAI-2 are symbolized by circles. Plus symbols indicate transcriptional activation of the gene(s) at the end of an arrow. The effect of the LasR-PAI-2 complex on *lasR* is unclear, so this was indicated by "+/-?". The minus symbol by the arrow extending from PAI-1 to the arrow between PAI-2 and RhlR indicates blocking of the association between PAI-2 and RhlR. To begin the quorum-sensing cascade, LasR and PAI-1 are both produced at a basal level. As culture density increases, *lasR* is activated by Vfr (1), and PAI-1 reaches a threshold concentration and binds to LasR. We speculate that at low culture densities, the PAI-1 concentration is in excess of the PAI-2 concentration, allowing PAI-1 to block the interaction of RhlR and PAI-2. The autoinduction of *lasl* by LasR-PAI-1 could keep the PAI-1 concentration well above that of PAI-2 until enough RhlR and/or PAI-2 is produced to overcome the blocking effect of PAI-1. Once RhlR associates with PAI-2, autoinduction of *rhlI* occurs and the remainder of the RhlR-PAI-2-controlled genes are activated. rhlA'-lacZ in E. coli decreased in a dose-dependent manner with increasing concentrations of PAI-1 (Fig. 6), suggesting that PAI-1 could block the PAI-2-binding site(s) of RhlR and cause the inhibition of a RhlR-controlled gene. This indicated that PAI-1 controls RhlR activity at a posttranslational level. Kuo et al. (10) have reported that a secondary autoinducer of V. fischeri inhibits activation of the lux operon, but it is not known whether this autoinducer is part of the lux system or primarily involved in a separate quorum-sensing system. The phenomenon shown here is the first report of an autoinducer from a defined quorum-sensing system within a bacterium that inhibits the activity of a second LuxR-type protein within the same bacterium. To help clarify the circuitry involved in this complex regulation hierarchy, we present a model of *P. aeruginosa* quorum sensing (Fig. 7). We speculate that in *P. aeruginosa*, the post-translational control of RhlR by PAI-1 occurs before *rhlI* is induced, when the concentration of PAI-1 is higher than the concentration of PAI-2. PAI-1 could block PAI-2 from associating with RhlR until enough RhlR and/or PAI-2 was present to overcome the PAI-1 blocking effect. At that point, RhlR–PAI-2 could autoinduce *rhlI*, which would allow the concentrations of PAI-2 and PAI-1 to become approximately equal, as we have seen in stationary-phase cultures (5 to 10 μM [22, 23]). This would allow *P. aeruginosa* to delay the induction of genes controlled by *rhl* quorum sensing and provide this organism 3132 PESCI ET AL. J. BACTERIOL. with yet another mechanism to temporally control the activation of important factors. The control of RhIR at both the transcriptional and post-translational levels provides *P. aeruginosa* with an elegant mechanism through which it can use the *las* quorum-sensing system to control the *rhl* quorum-sensing system. The importance of this discovery becomes evident when one considers both the multiple virulence factors controlled by these two systems and the report (11) that RhIR–PAI-2 activates transcription of the sigma factor *rpoS*. The results presented here also lead us to speculate that it may be possible to develop a single therapeutic autoinducer analog of PAI-1, rather than two different analogs, which will inhibit expression of virulence genes controlled by both LasR and RhIR. ## ACKNOWLEDGMENTS E. C. Pesci was supported by Research Fellowship Grant PESCI96FO from the Cystic Fibrosis Foundation. P. C. Seed was supported by a training grant (5T32A107362-07) in microbial pathogenesis from the National Institutes of Health. This work was also supported by National Institutes of Health research grant R01A133713-04. We thank U. A. Ochsner, and D. E. Ohman for plasmid pUO101 and strain PDO100, respectively. We also thank L. Passador, C. Van Delden, J. Bliss, R. Smith, C. S. Pesci, and L. E. Pesci for help during manuscript preparation and/or thoughtful insight and J. Nezezon for technical support. #### REFERENCES - Albus, A. M., L. J. Runyen-Janecky, S. E. H. West, and B. H. Iglewski. Submitted for publication. - 2. Albus, A. M., P. C. Seed, and B. H. Iglewski. Unpublished data. - 3. **Brint, J. M., and D. E. Ohman.** 1995. Synthesis of multiple exoproducts in *Pseudomonas aeruginosa* is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family. J. Bacteriol. 177:7155–7163. - Chang, A. C. Y., and S. N. Cohen. 1978. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J. Bacteriol. 134:1141–1156. - Fuqua, W. C., S. C. Winans, and E. P. Greenberg. 1996. Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators. Annu. Rev. Microbiol. 50:727–751. - Gambello, M. J., and B. H. Iglewski. 1991. Cloning and characterization of the *Pseudomonas aeruginosa lasR* gene: a transcriptional activator of elastase expression. J. Bacteriol. 173;3000–3009. - Gambello, M. J., S. Kaye, and B. H. Iglewski. 1993. LasR of *Pseudomonas aeruginosa* is a transcriptional activator of the alkaline protease gene (apr) and an enhancer of exotoxin A expression. Infect. Immun. 61:1180–1184. - Hanzelka, B., and E. P. Greenberg. 1995. Evidence that the N-terminal region of the *Vibrio fischeri* LuxR protein constitutes an autoinducer-binding domain. J. Bacteriol. 177:815–818. - Holloway, B. W., V. Krishnapillai, and A. F. Morgan. 1979. Chromosomal genetics of *Pseudomonas*. Microbiol. Rev. 43:73–102. - Kuo, A., S. M. Callahan, and P. V. Dunlap. 1996. Modulation of luminescence operon expression by N-octanoyl-L-homoserine lactone in ainS mutants of Vibrio fischeri. J. Bacteriol. 178:971–976. - Latifi, A., M. Foglino, K. Tanaka, P. Williams, and A. Lazdunski. 1996. A hierarchical quorum-sensing cascade in *Pseudomonas aeruginosa* links the - transcriptional activators LasR and RhlR to expression of the stationary-phase sigma factor RpoS. Mol. Microbiol. 21:1137–1146. - Linn, T., and R. St. Pierre. 1990. Improved vector system for constructing transcriptional fusions that ensures independent translation for *lacZ*. J. Bacteriol. 172:1077–1084. - Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. - Miller, J. 1972. Experiments in molecular genetics, p. 352–355. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. - Ochsner, U. A., A. K. Koch, A. Fiechter, and J. Reiser. 1994. Isolation, characterization, and expression in *Escherichia coli* of the *Pseudomonas aeruginosa rhlAB* genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J. Biol. Chem. 269:19787–19795. - Ochsner, U. A., A. K. Koch, A. Fiechter, and J. Reiser. 1994. Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in *Pseudomonas aeruginosa*. J. Bacteriol. 176:2044–2054. - Ochsner, U. A., and J. Reiser. 1995. Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in *Pseudomonas aeruginosa*. Proc. Natl. Acad. Sci. USA 92:6424–6428. - Ohman, D. E., S. J. Cryz, and B. H. Iglewski. 1980. Isolation and characterization of a *Pseudomonas aeruginosa* PAO mutant that produces altered elastase. J. Bacteriol. 142:836–842. - Passador, L., and T. Linn. 1989. Autogenous regulation of the RNA polymerase β subunit of *Escherichia coli* occurs at the translational level in vivo. J. Bacteriol. 171:6234–6242. - Passador, L., J. M. Cook, M. J. Gambello, L. Rust, and B. H. Iglewski. 1993. Expression of *Pseudomonas aeruginosa* virulence genes requires cell-to-cell communication. Science 260:1127–1130. - Passador, L., K. D. Tucker, K. R. Guertin, M. P. Journet, A. S. Kende, and B. H. Iglewski. 1996. Functional analysis of the *Pseudomonas aeruginosa* autoinducer PAI. J. Bacteriol. 178:5995–6000. - Pearson, J. P., K. M. Gray, L. Passador, K. D. Tucker, A. Eberhard, B. H. Iglewski, and E. P. Greenberg. 1994. Structure of the autoinducer required for expression of *Pseudomonas aeruginosa* virulence genes. Proc. Natl. Acad. Sci. USA 91:197–201. - Pearson, J. P., L. Passador, B. H. Iglewski, and E. P. Greenberg. 1995. A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 92:1490–1494. - 24. Pearson, J. P., E. C. Pesci, and B. H. Iglewski. Submitted for publication. - Preston, M. J., P. C. Seed, D. S. Toder, B. H. Iglewski, D. E. Ohman, J. K. Gustin, J. B. Goldberg, and G. B. Pier. 1996. Submitted for publication. - Rust, L., E. C. Pesci, and B. H. Iglewski. 1996. Analysis of the *Pseudomonas aeruginosa* elastase (*lasB*) regulatory region. J. Bacteriol. 178:1134–1140. - Seed, P. C., L. Passador, and B. H. Iglewski. 1995. Activation of the *Pseudomonas aeruginosa lasI* gene by LasR and the *Pseudomonas* autoinducer PAI: an autoinduction regulatory hierarchy. J. Bacteriol. 177:654–659. - Smith, A. W., and B. H. Iglewski. 1989. Transformation of *Pseudomonas aeruginosa* by electroporation. Nucleic Acids Res. 17:10509. - Stevens, A. M., K. M. Dolan, and E. P. Greenberg. 1994. Synergistic binding of the Vibrio fischeri LuxR transcriptional activator domain and RNA polymerase to the lux promoter region. Proc. Natl. Acad. Sci. USA 91:12619 12623. - Toder, D. S., M. J. Gambello, and B. H. Iglewski. 1991. Pseudomonas aeruginosa LasA; a second elastase gene under transcriptional control of lasR. Mol. Microbiol. 5:2003–2010. - 31. Woodcock, D. M., P. J. Crowther, J. Doherty, S. Jefferson, E. DeCruz, M. Noyer-Weidner, S. S. Smith, M. Z. Michael, and M. W. Graham. 1989. Quantitative evaluation of Escherichia coli host strain for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res. 17:3460–3478 - Yanisch-Perron, C., J. Vieira, and J. Messing. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119.