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Supporting Text

Weight distribution: Analytical Derivation

In the following, it is shown that the energy landscape (U(x)) and the weight distribution

(Pt(w)) of the corresponding CSN are related by an analytical formula. The weight of a node is

defined as the number of times the configuration is visited during the simulation. In the continuous

approximation and spherical coordinates Pt(w) for w > 0 is written as

Pt(w) =
1
Vt

∫ ∞

0
dr

∫
rD−1dΩδ(w(r,Ω, t)− w), (i)

with Vt the volume of the space visited in the simulation and D the dimension. Ω is the solid angle

in D-dimensional spherical coordinates and w(r,Ω, t) the weight of the node at position (r,Ω), at

time t. For simplicity spherical symmetry of the energy landscape (U(x) = U(r)) will be assumed.

For large enough t, w(r, t) is proportional to the stationary solution. Taking U(r) in the units

of kBT and U(0) = 0: w(r, t) = w(0, t) exp(−U(r)). The property of δ(f(x)) gives 1

δ(w(r, t)− w) = δ(w(0, t) exp(−U(r))− w) =
n∑

i=1

δ(r − r∗i )
|wU ′(r∗i )|

(ii)

with exp(−U(r∗i )) = w/w(0, t) and n is the number of simple zeros of w(r, t)−w (values of w such

that w(r, t)−w has no zeros are excluded and for such w, Pt(w) = 0). By introducing Eq. (ii) into

Eq. (i) one obtains

Pt(w) =
C

w

n∑
i=1

r∗ D−1
i

|U ′(r∗i )|
(iii)

with C the appropriate normalizing factor including the time dependence (since we restrict our-

selves to the stationary state, the time dependence will be dropped in the following). The first

important remark is the w−1 factor in Eq. (iii). This factor does not depend on the particular shape

of the energy landscape, neither on the dimension D. Thus any weight distribution is expected to

have a power-law P (w) ∼ w−1 multiplied by a modulating factor.

Simple Energy Landscape Models

Quadratic well

The quadratic well in spherical coordinates is defined by the equation (see also Fig. 5)

U(r) = αr2 α > 0. (iv)

1 For a given function f(x) with n simple zeros f(x∗
i ) = 0, f

′
(x∗

i ) 6= 0, i = 1 . . . n: δ(f(x)) =
Pn

i=1

δ(x−x∗
i )

|f ′
(x∗

i )|
.
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In this case, r∗ of Eq. (ii) (i.e., the values of r which yield the peaks of the delta function) can be

analytically calculated as

r∗ =
(
− 1
α

ln
(

w

w(0)

)) 1
2

, (v)

which, in turn, gives

P (w) =
C

w

(
ln

(
w(0)
w

))D
2
−1

. (vi)

The node weight distribution P (w) follows a power-law of exponent −1 with a logarithmic cor-

rection for D > 2. This is verified numerically as shown in Fig. 6A. The analytical curves are

obtained from Eq. (vi) with the fitting parameters w(0) as the weight of the heaviest node visited

during the simulation and C the appropriate normalization. P (w) follows exactly a power-law for

D = 2. The logarithmic correction becomes more and more significant as D increases, such that

some of the distributions seem to follow a power-law with an exponent smaller than −1. Fig. 6B

shows a rescaling of P (w) where straight lines are linear regressions. Eq. (vi) shows that the slope

should be equal to D/2− 1. The Monte Carlo results are close to the expected ones and the small

differences comes from finite size effects and discretization. Though this rescaling seems appealing

to extract the effective dimension of a system, we observed that the values of the slopes are rather

sensitive to finite sampling, especially for large w. Therefore this analysis has to be used with great

care to infer the dimensionality of the system.

Square well

The infinite square well with spherical symmetry is defined by (see also Fig. 5):

U(r) =

 0 if r ≤ 1;

∞ if r > 1.
(vii)

In this case, all the sites with r ≤ 1 have an equal probability of being visited resulting in a flat

stationary solution for w(r) and P (w) becomes a delta function. In the simulation a gaussian

distribution is obtained, due to the finite size of the sampling. Fig. 7 shows a comparison between

P (w) obtained for the quadratic well and the square well in D = 2 dimensions. The gaussian has a

mean value around w̄ = 258, which is close to the expected value (the number of snapshots (2 ·106)

divided by the number of possible sites: π · (1/a)2 ≈ 7850, ⇒ w̄exp = 255, where a = 0.02 is the

distance between two neighbor sites in the Monte Carlo simulation (see also Methods).
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Mexican-Hat landscape

The two cases studied above illustrate two different types of energy landscapes. In the quadratic

well, the dynamics of the system is mainly driven by the gradient of the energy landscape, and the

energy basin is enthalpic. Whereas for the square well, the energy basin is entropic. It is important

to note that P (w) bears the signature of the difference between these two cases. An example

containing both kinds of energy landscapes, i.e., entropic and enthalpic, is the so called “Mexican-

Hat” landscape model. The energy function has a spherical symmetry and is defined by (see also

Fig. 8A):

U(r) = 40(r6 − 1.95r4 + r2). (viii)

In D > 1 dimensions, the model has two energy basins. The central basin has a minimum at

r = 0. The surrounding basin is a shell centered at r = 0.97. The two minima are intrinsically

different. The central minimum is well defined and point-like, therefore is enthalpic. The second

minimum corresponds to r∗ ≈ 0.97. It is not point-like and has an entropic part along Ω, where

Ω is the solid angle in D dimensions, plus an enthalpic part along r. The two energy basins are

separated by a maximum at r̂ ≈ 0.59. On a log-log plot, P (w) of the central basin (r < r̂) has

a broad tail, which is typical for an enthalpic well (Fig. 8B). On the other hand, P (w) of the

surrounding basin (r > r̂) shows a rather flat region followed by an exponential decay. This decay

is typical of entropic basins such as the square well. We do not obtain a gaussian shape since the

basin has also an enthalpic component along r. As it can be seen in Fig. 8C, the nodes with a

low weight are either close to r̂ or have r > 1.05. The nodes of the surrounding basin with a large

weight are close to the minimum r∗. As expected the heaviest node of the network is at r = 0.

Cluster Detection in Multiple Minima Energy Landscape Models

Multidimensional double well

The multidimensional double well is defined by the energy function:

U(x) = 5
D∑

i=1

(x4
i − 2x2

i − εxi + 1). (ix)

Along each dimension it has the shape of a double well with a slight asymmetry as shown in Fig.

9A. In the following the case D = 5 and ε = 0.05, already seen in the main text is described in

details. A simulation with a=0.2 and N = 3 · 106 was performed to sample the energy surface.
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124’156 different sites have been visited. In order to reduce the complexity we first grouped the

sites according to a distance criterion. We divide the space into boxes of size (3a)D. All the 35 sites

within one box form one node of the network. The MCL algorithm with p = 1.2 finds the expected

32 clusters. In Fig. 9B, an histogram of the sizes of the different clusters is shown. There are

6 groups of nodes equally distributed along the x-axis (note the logarithmic scale), reflecting the

fact that the free energy of the minima can have 6 different values. The system is characterized by

2,815 nodes (Fig. 9C). The fact that most of the clusters are connected to all the other ones make

the display of the network a difficult task. In Fig. 9D the network where each node represents

a cluster is displayed. The size of the nodes correspond to the total weight of the cluster and

the size of the edges to the total weight of edges connecting the two clusters (i.e. it is inversely

proportional to the height of the energy barrier). As expected, there is one heaviest node (red

node) corresponding to the sites with only positive coordinates, five nodes of almost the same size

(blue nodes) corresponding to the sites with one negative coordinate, ten nodes (green nodes) to

the sites with two negative coordinates, ten nodes (pink nodes) to the sites with three negative

coordinates, five nodes to those with four negative coordinates (yellow) and one last node to the

sites with only negative coordinates. A detailed analysis of the coordinates of the nodes of the

clusters shows that only 3.4% are “miss-classified”, in the sense that they belong to a cluster that

does not correspond to their actual basin.

Mexican-Hat landscape

In Fig. 10A the cluster structure of the Mexican-Hat model is shown (see also main text).

The network is obtained from the simulation on the landscape defined by Eq. (viii) and D = 2

dimensions. Clusters are found applying the MCL algorithm with p = 1.2. From the picture the

central cluster (green nodes) and the surrounding cluster (red nodes) are clearly visible. In Fig.

10B the distribution of the radial coordinate r for each of the two clusters is shown. Less than

6% of the nodes are “misclassified”, i.e. either belongs to the central cluster and have r > 0.59, or

belongs to the surrounding cluster and have r < 0.59.

Alanine Dipeptide: Network Clusterization Details

In this section all the details for the clusterization of the configuration space network of the

alanine dipeptide for the MCL, Potts Hamiltonian and Q optimization methods are reported (see

the main text for a description of the three algorithms).



SI-5

In the MCL case (1; 2), large values of the parameter p results in an increased number of

communities. For p = 1.5, 19 communities are detected but only six of them have a statistically

significant population. They include the expected C7eq, αR, C7ax, αL basins, the C5 basin which

relaxes very fast to C7eq, and the poorly sampled transition region between C7ax and αL, namely

Tφ>0. As the value of p is decreased first the C5 basin is absorbed to C7eq and than the Tφ>0 region

to C7ax. For p = 1.2 the physically relevant four basins of the landscape are correctly identified (no

other clusters are detected). A further decrease of p results in the grouping of the φ > 0 region into

one community (see Figs. 11 and 13). For p = 1 the landscape is considered as one community by

definition. Interestingly, the decrease of the parameter p nicely anti-correlates with the minimum

activation barrier between the detected free-energy basins. Values of p = 1.5, 1.4, 1.3, 1.2 and 1.1

reflects minimum activation barriers of ∆F ‡ = 1.5, 2.2, 2.2, 2.8 and 3.6 kcal/mol, respectively (see

Fig. 11 and Table 1). This result indicates that MCL algorithm preserves the barriers between free-

energy basins and for this reason is suitable for the analysis of networks generated by a dynamical

process.

For the case of the Potts model algorithm (3) the number of possible spin states (i.e. maximal

number of clusters) was set to 10. The parameter γ enforces that all the communities have an outer

link density smaller than γ. For γ = 0.00001 two main clusters are detected which correspond to

the φ > 0 and φ < 0 regions of the (φ, ψ) space. While increasing γ at first basins αL and

C7ax are split. For γ = 0.001 a physically reasonable clusterization is obtained with all the 10

spin states populated. The four main basins are detected as well as the Tφ>0 region (see text

above). This partition is very similar to the one obtained with MCL with p = 1.3−1.4. Increasing

the parameter γ to 0.01 results in the detection of 10 communities. Among them four clusters

are defined by dihedral angles corresponding to the four basins of attraction of the dipeptide.

Unfortunately other spin states, which detect extensive transition regions between the four main

basins, are also quite populated (see Fig. 12). For γ = 0.1, the Potts Hamiltonian is dominated

by the antiferromagnetic term. Five spin states are equally populated but without any relation to

the real partition (see Fig. 12). As it is shown in Figs. 12 and 13, while decreasing the value of γ,

C7eq and αR are grouped together before C7ax is merged to αL. This behavior indicates that the

decrease of the parameter γ does not result in the grouping of basins which are separated by higher

activation barriers (see Table I in the main text) as it would have been desirable. This observation

reflects the fact that the algorithm forces the outer link density between clusters, which depends

on the number of direct transitions, to be smaller than γ (fewer transitions are observed between

C7ax and αL with respect to C7eq and αR).
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Finally, Q optimization algorithm focuses on the detection of clusters of nodes with an intra-

cluster link density higher than random grouping (4). As shown in Fig. 12, this results in an

unphysical picture of the community structure of the alanine dipeptide configuration space: the

C7eq basin, which is the region of the network characterized by the highest link weights, is split in

four parts and C7ax is merged with αL. Even if this algorithm has proven to perform efficiently

on networks of other data types, it fails to recover the correct partition into free-energy basins of

the dipeptide landscape. This is probably due to the fact that link densities can be very different

in the four densely connected regions of the network while the modularity Q is a useful clustering

parameter under the (not explicit) assumption of homogeneous intra-cluster link density.

Alanine Dipeptide: Further Configuration Space Discretizations

In the main text the configuration space of the alanine dipeptide was discretized by dihedral

angles for a total of n × n cells, where n = 50. In the following, it is investigated how the MCL

clusterization changes for different values of n and for a completely different discretization of the

configuration space based on inter-atomic distances.

Dihedral angles

A more fine/coarse division of the dihedral space results in an increasing/decreasing number

of nodes and links. A discretization of the (φ, ψ) space in 20 × 20 cells results in a network of

348 nodes. MCL algorithm with p = 1.2 detects four communities which are shown in Fig. 14A.

The community structure found in this case is very much the same as the one presented in the

main text where n = 50. Similar results are found for higher values of n which indicates that the

community structure is robust upon different discretizations of the (φ, ψ) space.

Interatomic distances

A more stringent test on the robustness of free-energy basins detection is carried out considering

a completely different discretization of the configuration space based on interatomic distances. This

approach is rather crude and represents a challenging test on the dependence of the community

detection procedure upon the definition of network nodes. Each cell of the configuration space is

defined by an array of inter-atomic distances of the atoms of the central alanine residue , e.g., (d1,

d2, d3, d4, d5, d6, d7, d8, d9, d10) (see Table 2). During the simulation the 10 distances have
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fluctuations between 0.5 Å to more than 2 Å. Interatomic distance values are discretized using

bins of M = 0.3 Å which results in a network of 10713 nodes (which is one order of magnitude

larger than a dihedral discretization). Interestingly, four communities are found by the MCL

algorithm with p = 1.2 which is consistent with the community structure found when cells are

defined according to dihedral angles (see Fig. 14B). However, for larger values of the discretization

parameter M the inter-basin transition probabilities are larger than the one found by the (φ, ψ)

discretization, reflecting the presence of many misplaced nodes near the saddles. This behavior

suggests that crucial for a good clusterization is structural homogeneity inside the cells of the

configuration space.
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TABLE 2 List of the 10 interatomic distances for the atoms belonging to the central alanine residue

distance name interacting atoms

d1 N : Cβ

d2 N : C

d3 N : O

d4 H : Cα

d5 H : Cβ

d6 H : C

d7 H : O

d8 Cα : O

d9 Cβ : C

d10 Cβ : O
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FIG. 5 The quadratic (dotted line) and square well (blue line) energy functions in D = 1.

FIG. 6 (A) Node weight distribution for the quadratic well energy landscape (α = 5) in four different

dimensions. The red curve shows the analytical estimate as detailed in Methods and Models with w(0) the

weight of the heaviest node and C the appropriate normalization. The parameters are: D = 2, a = 0.02,

N = 2 · 106; D = 4, a = 0.1, N = 2 · 106; D = 6, a = 0.2, N = 2 · 106; D = 10, a = 0.3, N = 5 · 106.

The parameter a is the distance between two neighbor sites in the Monte Carlo simulation (see Methods

and Models for details). (B) Rescaled node weight distribution. For D = 2, 4, 6, 10, the slopes computed by

linear regressions are 0, 1.01, 2.01, 4.08, respectively, and thus are close to the expected values. Note that for

large weights the fluctuations due to discretization become important and the data do not follow anymore

a straight line. For clarity, the data for D = 2 have been shifted in order not to overlap.

FIG. 7 Comparison between the node weight distribution in D = 2 dimensions for the square well and the

quadratic well. We have used a = 0.02 and N = 2 · 106 in both cases. The distribution for the square well

fits a gaussian.

FIG. 8 (A) Energy function of the Mexican-Hat model along the radial coordinate r. (B) Normalized node

weight distribution for the two basins of the Mexican-Hat model in D = 3 dimensions. The nodes have been

attributed to the basins according to the coordinate r. (C) Position of every node as a function of the node

weight. r = 0.97 corresponds to the minimum in the surrounding basin (entropic). r = 0.59 corresponds to

the maximum separating the two basins. a = 0.05, N = 106.
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FIG. 9 (A) Double well landscape model energy function in one dimension. The model is characterized

by 2D minima. (B) Histogram of the size of the clusters found by the MCL algorithm with p = 1.2. The

color code is the same as in (D). (C) Network representation of the configuration space model in D = 5

dimensions. Both the shape and the color of the nodes represent clusters. (D) Network of the clusters. The

size of the nodes is proportional to the weight of the clusters and the size of the edges is proportional to

the number of transitions from one cluster to another one visited during the simulation. ε = 0.05, a = 0.2,

N = 3 · 106

FIG. 10 (A) Network representation of the Mexican-Hat landscape model in D = 2 dimensions. Nodes are

color coded according to the two clusters detected by the MCL algorithm with p = 1.2, a = 0.02, N = 105.

(B) Distribution of the coordinate r of the nodes of the network for each of the two clusters.

FIG. 11 Ramachandran-map representation of the alanine dipeptide network clusterization with MCL and

p = 1.1, 1.2, 1.3, 1.4, 1.5. Oval boxes and arrows show the smallest activation energy ∆F ‡ to cross for an

inter-basin transition. As the parameter p increases smaller activation barriers are detected by the algorithm.

FIG. 12 Ramachandran-map representation of the alanine dipeptide network clusterization. (Red box)

Modularity optimization cluster structure. (Black box) Potts Hamiltonian cluster structure for 5 values

of the ferromagnetic-antiferromagnetic coupling parameter γ and 10 spin states (see Methods and Models).

FIG. 13 Schematic cluster splittings as the p (MCL) and γ (Potts) granularity-related parameters are

changed. The sequence of events shows that MCL consistently finds basins with smaller activation barriers

as p is increased. This is not the case for the Potts Hamiltonian approach which searches for optimal outer

link densities.
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FIG. 14 Discretization of the configuration space of the alanine dipeptide and community detection. (A)

Ramachandran-map representation of the dihedral discretization in 20× 20 cells. (B) Ramachandran-map

representation of the inter-atomic distance discretization with M = 0.3 Å (see Table 2). In both cases nodes

are color coded according to the communities detected by the MCL algorithm with p = 1.2.


