JOURNAL OF BACTERIOLOGY, Sept. 1997, p. 5602-5604
0021-9193/97/$04.00+0
Copyright © 1997, American Society for Microbiology

Vol. 179, No. 17

Cell Cycle Regulation of Flagellar Genes
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The expression of the flagellar master operon, flhDC, peaked in the middle of three consecutive cell cycles.
The level of expression was lowest at the time of cell division. The expression of the second-level operon, flhB,
peaked at cell division. The swimming speed of individual cells was also highest at the time of cell division.

The expression of flagellar genes in response to environmen-
tal stress takes place on multiple transcriptional levels (7). At
the top of this hierarchy is the flagellar master operon, fIADC,
which acts as a transcriptional activator (2) for the downstream
flagellar genes. The expression of flhDC is tightly regulated by
biochemical and molecular signals (11, 14, 15, 17).

Connections between FIhD and other stress response sys-
tems have been demonstrated recently (3-5). The question of
whether FIhD is a global regulatory protein involved in many
stationary-phase processes in the cell has been raised (12).

One function of FIhD, other than the regulation of flagella,
is the regulation of the cell division rate (12). Cells with mu-
tations in FIhD divided at a faster rate than wild-type cells in
stationary phase. The regulation of the cell division rate by
FIhD involves the acid response gene cadA4 (13). Earlier, Nish-
imura and Hirota had found that the expression of flagella by
cell division mutants and DNA replication mutants decreased
when the nonpermissive temperature was reached (10). It was
proposed that the expression of flagella is regulated by the
bacterial cell cycle. The possibility of an involvement of FIhDC
in this regulation was discussed.

It has now been demonstrated that the expression of flagel-
lar genes is indeed regulated throughout the cell cycle. By
using fusions to the reporter gene lacZ, it has been shown that
the level of expression of the master operon, fIhDC, is highest
in the middle of the cell cycle. The expression of the second-
level operon, flhB, increases toward the end of the cell cycle
and is highest at the time of cell division. The swimming speed
of individual cells is also highest at the time of division.

Growth phase regulation of flhDC expression. Amsler et al.
(1) determined that the expression of the second-level operon,
fIhB, peaked in late exponential phase. The swimming speed of
individual cells was highest in post-exponential phase.

The growth phase dependence of fliDC expression was de-
termined. An fIhDC::lacZ construct (15) was kindly provided
by C. Park (Korea Advanced Institute of Science and Tech-
nology, Taejon, South Korea) and introduced, via P1 transduc-
tion (16), into the parent strain YK410 [F~ araD139
Alac(U169) strA thi pyrC46 nalA thyA his (8)]. Bacteria of the
resulting strain, BP64, were grown at 34°C in tryptone broth
(TB; 1% tryptone, 1% NaCl) after inoculation from an over-
night culture. The expression of flhDC corresponded to the
activity of B-galactosidase (9).

Figure 1 shows the growth phase regulation of fIlADC expres-
sion. During the first 30 min of growth, the total activity was so
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low that a statement about the expression level cannot be
made. The level of FIhDC expression was highest during the
exponential phase between an optical density at 600 nm
(ODgy) of 0.04 to 0.1 and a cell density of 3.5 X 107 to 7 X 107
cells/ml. Maximum expression was first reached at mid-expo-
nential phase. After 1.5 h of growth, the expression of flhDC
decreased steadily. A second increase in expression was ob-
served after 3 h of growth during the transition to stationary
phase.

According to Amsler et al. (1), the expression of flhiB was
also growth phase dependent. Expression from a flhB::lacZ
fusion was at its peak in late exponential phase. This corre-
sponds to an ODy, of 0.2 to 0.3 and a cell density of 10®
cells/ml under our growth conditions.

Expression of the master operon, flhDC, peaks in the middle
of the cell cycle. Bacteria were synchronized with a modifica-
tion of the membrane filtration technique, or “baby machine”
(6), as described previously (12). Cells were grown in TB for
3 h. Cells were then loaded onto a 0.22-pum-pore-size nitrocel-
lulose filter (Millipore Corp., Bedford, Mass.) coated with
poly(p-lysine). The filter was inverted, and TB was pumped
through it at a speed of 1 ml/min. Cells were checked micro-
scopically for homogeneity of size. Freshly divided baby cells
eluted after approximately 20 min and were collected on ice.
These cells were used to start a synchronously growing culture.

Figure 2A shows the cell cycle dependence of fihDC expres-
sion. The total activity of B-galactosidase increased stepwise.
During three consecutive cell cycles (cycles two to four), the
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FIG. 1. Expression of fihDC in an asynchronously growing culture. Cells were
grown in TB over a time period of 5 h at 34°C. The open diamonds represent the
ODg (right y axis), and the stars represent the expression of flhDC as the
activity of B-galactosidase (in Miller units; left y axis). The experiment was done
twice, and the means for the populations were determined.
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FIG. 2. Expression of flnDC (A) and flhB (B) and swimming speed (C) of
cells in a synchronously growing culture. Freshly divided baby cells were grown
in TB over a time period of 3 h at 34°C. The open circles represent the number
of cells per milliliter (right y axis), and the stars represent the expression of flhDC
(A) or flhB (B) in units of total activity of B-galactosidase or the swimming speed
(C) in units of micrometers per second (left y axis). Vertical lines represent the
cell divisions. The experiment was done two to three times, and the means for the
populations were determined. Out-of-range data were included but not con-
nected to the other points.

expression from the flhDC promoter increased during the first
half of each cycle, reached a plateau at midcycle, and stayed at
a relatively steady level until cell division. Alternatively, the
specific activity of B-galactosidase (in Miller units) was plotted
(data not shown). The specific activity increased during the
first half of cycles two to four, as demonstrated for the total
activity. Toward the end of each cycle, the specific activity
decreased due to an increase in the OD.

Expression of the second-level operon, flhB, peaks at the
time of cell division. A lacZ gene, fused transcriptionally to the
second-level operon, flhB, was obtained from strain MC453 (1)
and transduced into strain YK410.

Figure 2B shows the cell cycle dependence of flhB expres-
sion. FIhB expression increased stepwise during cycles two to
five. During these four consecutive cell cycles, the expression
increased during the second half of each cycle and reached a
maximum level at or just prior to cell division. This is, on
average, half a cell cycle later than the expression maximum of
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fIhDC. The total activity of B-galactosidase stayed relatively
steady over the course of cell division.

Swimming speed. The swimming speed of cells was deter-
mined according to the protocol of Amsler et al. (1). Samples
were videotaped and processed with a VP110 video processor
(Motion Analysis Corp.). Computer motion analysis programs
were developed with CellTrak software (Motion Analysis
Corp.).

The samples from the two previous experiments were vid-
eotaped immediately after collection and analyzed (Fig. 2C).
With respect to growth phase, the swimming speed of the cells
peaked at an ODg, of 0.25 to 0.3 and a cell density of 10®
cells/ml. The highest cell speed was observed at the time of
division; it dropped immediately after the division.

Expression of flhD and flhB and the swimming speed of
individual cells are regulated in a timely order. The data
presented in this paper indicate the consecutive increase in the
level of master operon expression, second-level gene expres-
sion, and, finally, swimming speed. This consecutive order can
be seen in both the growth phase dependence and the cell cycle
dependence of flhD expression, flhB expression, and swimming
speed.

With respect to growth phase regulation, flhD expression,
flhB expression, and swimming speed of individual cells reach
their maxima at ODg,s of 0.08, 0.2, and >0.3, respectively.
This is consistent with the data of Amsler et al. (1), who
observed the highest level of expression of flhB in late expo-
nential phase and the highest swimming speed in post-expo-
nential phase.

With respect to cell cycle regulation, flhD expression peaks
in the middle of a cycle and flhB expression peaks half a cycle
later. The swimming speed was highest at the time of cell
division. Since the peak in flhB expression at the second cell
division did not lead to an increase in swimming speed at the
same time, it could as well be that the formation of flagella
takes one full cycle.

Among the stresses that regulate the expression of flhDC are
catabolite repression (17), heat shock (14), and the concentra-
tion of acetyl phosphate (11), mediated by phosphorylation of
OmpR (15). Any one of these could be involved in the cell
cycle regulation of flhDC.
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