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PROTOCOL S1 
  
 
1.  AGE-STRUCTURED MODEL EQUATIONS. 
 
 
The full age-structured model recapitulates the single-group model shown in the 
main text, but with six copies of each of the model equations, with the force of 
infection indexed by i=1 to 6 for the 6 age groups.  Starting susceptible 
population sizes are those from the Netherlands in ref. [1], while the force of 
infection for age group i is given by: 
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These population sizes and values of SUijβ  are given in Supplementary Table 1.  
The values of the SUijβ  are calculated from the contact matrix defined in [1], 
scaled linearly to obtain a maximum eigenvalue of ijR  equal to the desired value 
(2 in Supplementary Table 1).  No aging of the population is considered in the 
brief interval simulated.  Note that the jξ term is indexed by j, so that as soon as 
at least one resistant case has (probabilistically) accumulated in an age stratum, 
it can transmit to all other age strata.  Thus in the age-structured model, resistant 
cases accumulate by de novo emergence and by transmission from other age 
strata in which at least a single case has accumulated. 
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2. QUASI-STEADY STATE APPROXIMATION.   
To facilitate analytic calculations, we make the following quasi-steady state 
approximation of the full system of equations.   
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 is the proportion of incident cases 

infected with the sensitive strain who are treated (this excludes those in whom 
resistance emerges, since that event is assumed to occur at the start of 
infection).  Since transmission is from prevalent cases, we are interested in the 
proportion of prevalent sensitive cases who are treated; this is different from the 
incidence proportion because duration is different under treatment.  Define this 
prevalence proportion as Tφ .  Assume that Tφ  takes on its quasi-steady-state 

value, 
(1 )T

T

qv
qv q v

φ =
+ −

.  This QSS assumption allows us to simplify the system 

to include only one equation for persons infected with the sensitive strain, in 
which infectiousness and clearance rates are weighted averages of those for 
treated and untreated persons: 
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    (2) 

 
Finally, we rewrite the system once more, now only redefining parameter 
combinations for readability: 
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Of interest will be the change in the ratio of resistant to sensitive strains in the 

population, R

S

Y
Y

ρ ≡ .  Note that, from system (3) and the quotient rule,  

[( ) ( )]R S R S SR
d b b X v v b X
dt
ρ ρ= − − − + .       (4) 

 
In time steps of the duration of infectiousness for the resistant strain (1/ ) we 
have: 

Rv
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R
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ρ ρ= − + − +      (5) 

 
where /R R RR b v≡  is the effective reproductive number for the resistant strain;  

/S S SR b v≡  is the effective reproductive number for the sensitive strain given the 
current level of treatment and prophylaxis; /SR SR SR b v≡  is the effective “reproductive 
number” for resistant cases created by sensitive cases given current levels of 
treatment and prophylaxis; and /S RK v v≡ is the ratio of the mean duration of 
resistant to the mean duration of sensitive infections, given the level of treatment 
and prophylaxis in the population.  As we have set up the model, treatment 
reduces SR  and increases K  , while prophylaxis reduces SR .  This quasi-steady 
state approximation is exact when the effect of treatment is on infectiousness 
only ( ,ST SU Tv vβ β< =

v
) and approximate when the effect is on duration as well  

( ).  The approximation works well through the peak of the epidemic but 
becomes less good in the declining phases. 

Tv >
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NOTE: R

S

Y
Y

ρ ≡  is convenient for analytic tractability because of the logistic 

structure of the equations of this system.  The instantaneous proportion of 

resistant infections can be recovered, of course, as 
1

R
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.  While ρ  is 

the simplest quantity to study dynamically, we have in the text and Figs 2 and S1 
considered a different variable, the cumulative proportion of all infections that are 
resistant, given by  
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 (here the weighting of cases by clearance rate 

converts integrated prevalence to total incidence).  This is more informative for 
considering the whole epidemic (as opposed to initial rates of increase) because 
the proportion resistant is of less interest when there is only one case than when 
there are many cases, and the cumulative incidence measure here takes that 
differenc into account in an appropriate way. 
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3.  ADDITIONAL RESULTS 
 
3a.  Assumptions about the effect of prophylaxis on immunity have modest 
effects on outcomes.  We have shown results under the assumption that 
individuals exposed to infection and successfully protected by prophylaxis do not 
make an effective immune response, hence remain in the susceptible (X) rather 
than the removed ( Z ) category ( 0pa = ).  As expected, other extreme 
assumption, that all such individuals become immune ( 1pa = ), modestly reduces 
the attack rate for a given level of prophylaxis (results not shown).     
 
 
3b.  Parameterization of antiviral treatment effect on infectiousness has little 
effect on results.  In the main text we make the assumption that the duration of 
infectiousness is the same for treated and untreated hosts infected with drug-
sensitive virus, but the intensity is multiplied by 1 Te− .  More generally, for a given 
efficacy of treatment in reducing transmission, we could assume that the mean 
duration of infectiousness is multiplied by (1 )Te γ−  and the intensity of 
transmission is multiplied by 1(1 )Te γ−− .  Changing γ  between 0 and 1 had 
minimal impact on the results (not shown).
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4. ANALYTIC RESULTS 
 
4a.  When resistance is rare, de novo emergence of resistance is more important 
than transmission of resistance; however, as resistance becomes common, de 
novo becomes less important than transmission.  Intuitively, this simply means 
that when resistance is rare, each additional case of resistance generated by de 
novo emergence is important, but once it is common, secondary cases of 
resistance become more common and come to dominate the effect of de novo 
emergence.  This qualitative result is clear from equation (5), in which there are 
two terms contributing to the rise in the odds of resistance in the population.  In 
the absence or near-absence of resistance ( 0ρ → ), the last term, which is 
always positive and describes the de novo emergence of resistance due to 
treatment and/or prophylaxis, dominates equation (5).  When resistance 
becomes more common ( 0ρ > ), the first term may dominate.  The first term 
describes the differential transmission, ( R S )R R K X− , and survival, 1K − , of the 
resistant vs. the sensitive strain.  The first term is typically negative in the 
absence of any antiviral use, reflecting the fitness cost of resistance in the form 
of lower transmissibility ( R SUβ β< ) and/or faster clearance ( ) of the 
resistant strain.  However, the first term increases with treatment, which reduces 
the duration and/or transmissibility of the sensitive strain, while leaving the 
resistant strain unaffected.  Thus, if there is enough treatment and/or prophylaxis 
to offset the fitness cost of resistance, then the first term will become positive and 
(if 

R SUv v>

ρ  is big enough) dominate the second term.   
 
4b.  When resistance is rare, treatment will contribute more than prophylaxis to 
the growth of resistance in the population.  Given our assumption that 
prophylaxis reduces transmission more than treatment, prophylaxis contributes 
more than treatment when resistance is sufficiently common.  We can compare 
the marginal contribution of treatment ( Tf ) vs. that of prophylaxis ( Pf ) to the rate 

at which resistance grows, d
dt
ρ , assuming (as in the text) that treatment reduces 

infectiousness but not duration (similar calculations, but more involved, can be 

made when both are affected).  We calculate the sensitivities of d
dt
ρρ = to 

treatment and to prophylaxis: 
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Clearly, when resistance is rare ( ρ  small), the sensitivity to treatment is greater, 
since by assumption treatment leads to more acquired resistance than 
prophylaxis.  When resistance is common ( ρ  large), prophylaxis contributes 
more under the biologically reasonable assumption that the reduction in 
transmission by prophylaxis is greater than the frequency of emergence of 
resistance under treatment ( P Te c> ).   
 
To clarify the algebra, this calculation has been made for the first unit of 
prophylaxis or treatment (derivative evaluated at 0P Tf f= = ).  This assumption is 
required only for the last term of each of the sensitivities (which does not contain 
ρ ); more generally, it is easy to show that for sufficiently large ρ , /d dtρ  is more 
sensitive to a unit increase in prophylaxis than treatment for any equal 
frequencies of treatment and prophylaxis (evaluating the sensitivities at 

P Tf f f= = ) 
 
NOTE: This comparison may be slightly misleading, since we are comparing the 
fraction of infectious hosts treated vs. the fraction of susceptible hosts 
prophylaxed.  This is not the same amount of drug use, since there will almost 
always be more susceptible hosts than infectious ones – requiring more drug for 
prophylaxis than treatment of the same “fraction.”  
 
4c.  Explanation of the finding that reducing transmission by non-drug 
interventions increases the fraction of resistant cases in the epidemic as a whole.  
We note in the Main Text and Fig. 3 that control of transmission by social 
distancing, vaccination, etc. will slow the epidemic and reduce overall attack 
rates, but will increase the prevalence of resistance.  In the Main Text we state 
that this can be understood as a “race” between the drug-sensitive and drug-
resistant epidemics, in which slowing transmission allows more time for the 
resistant epidemic to “catch up.” 
 
More formally, this result can be clearly understood in terms of Equation (5) 
above.  Assuming (as we have throughout) that antiviral treatment reduces 
infectiousness throughout the duration of infection, but does not reduce the 
duration of infectiousness (K=1), Equation (5) shows that the exponential growth 
phase of the prevalence of resistance occurs with a time scale of 

1~RES
R S

1
R R v

τ
−

, where 1
v

 is the duration of infectiousness or the “generation 

time” of the epidemic.  The growth of the epidemic of the sensitive strain occurs 

on a time scale of 1 1~
1EPID

SR v
τ

−
, which comes directly from the expression for 

the rate of exponential growth of an epidemic in a standard SIR model: 
 [2].  Reducing transmission of both strains by a factor10( 1)r R= − v θ−   (say by 

 by a factor 1
1 θ−

social distancing) increases RESτ  but increases EPIDτ  by a 
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factor 1 1
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than th hich resistance increases, giving resistance more time
“catch up” before the epidemic has passed through the population. 
 
 
d.  Explanation of the intermediate “optimum” in control of the epidemic.  

s, the time scale of ws re 

e time scale on w  to 

igures 3 and 4 in the main text show that, when resistance is able to spread, the 
e.  If 

off” only if the proportion of the 

4
F
total attack rate can be minimized by an intermediate amount of antiviral us
less than this amount is used, the sensitive strain infects more people, while if 
more than this amount is used, the resistant strain spreads quickly and 
essentially causes the whole epidemic. 
 
The basic mechanism behind this finding is that epidemics “overshoot.”  In a 
asic SIR model, an epidemic can “take b

population susceptible exceeds 01/ R .  However, once the epidemic takes off,
“overshoots,” continuing to spread even after the proportion susceptible 
below this number.  Moreover, the larger the starting susceptible population, the 
larger the overshoot, and the fewer susceptibles are left at the end of the 
epidemic, for a given 0

 it 
goes 

R .   
 
Our finding is that the proportion of the population left susceptible after an 
ncontrolled epidemic of the sensitive strain with a given 0R  (call it 0SRu ) is smaller 

 that than the proportion left susceptible after a partially controlled epidemic with
same strain (whose reproductive number is reduced by prophylaxis to  0PS SR R< ), 
followed (possibly) by an epidemic among the remaining susceptibles with a 
resistant strain, which has a basic reproductive number of 0 0R SR R≤  . 

This may happen in one of two ways.  First, the partially controlled ic 
 

 epidem may 
e large enough that it leaves too few susceptibles for the resistant strain to 

t strain to spread, specifically it may have left at least a proportion 

b
spread at all.  If so, it will nonetheless have left more susceptibles than an 
uncontrolled susceptible strain, since it was partially controlled, thus providing a 
net benefit. 
 
Second, the partially controlled epidemic may have left enough susceptibles for 

e resistanth
01/ RR  of the population susceptible.  Let us consider the worst case, of no fitness

cost, 0 0R S

 
R R= .  Then to show that the total size of the controlled sensitive 
mic plus the resistant epidemic is smaller than the size of the sensitive 

epidemic would have been without control, it is sufficient to show that the 
proportion left susceptible at the end of an epidemic, for a given 0

epide

R , is a 
decreasing function of the proportion susceptible at the start of the epidem
particular, more susceptibles will be left after the resistant strain s reads 

ic: in 
p in a 
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partially immune population than if a sensitive strain with the identical 0R  had 
spread in a fully immune population.  This can be done by a simple calculation
recapitulating the standard final size calculation for an SIR epidemic[2,3]. 
 
Consider the SIR epidemic without births or deaths: 

 

/

S dt SI

dR dt vI

d / β
/dI dt SI vIβ= − . 
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Now divide the first by the second equation and get 
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We wish to show that the proportion susceptible at time 

dS

∞  increases as the 
proportion susceptible at time 0 decreases, for a given transmissibility, i.e. 
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QED. 
 

te that this argument relies on many of the same considerations as a 
imilar argument recently made by Handel et al. (Andreas Handel, Ira Longini 

We no
s
and Rustom Antia, manuscript submitted to P Roy Soc Lond B, 2006) 
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5.  STRUCTURAL SENSITIVITY.  Correlation between treatment of cases 
and prophylaxis of their contacts. 
 
In the main analysis, we made the simplifying assumption that the probability of 
prophylaxing a particular contact was the same ( Pf ) regardless of whether the 
index case of that contact was treated or not.  This assumption probably 
somewhat overstates the impact of treatment and prophylaxis, because in reality 
individuals whose index cases have been treated may have greater access to 
prophylaxis due to better health care access and knowledge of their exposure to 
an infected index case.  As a result, prophylaxed contacts may be on average at 
less risk of transmission than unprophylaxed contacts, since their index cases 
will be less infectious. 
 
In this section we explore an alternate model structure in which a correlation (in 
principle negative or positive) is allowed between treatment of an index case and 
prophylaxis of his or her contacts.  Here we assume that a fraction Tf  of cases 
will be treated, and that a fraction TPf of their contacts will be prophylaxed; on the 
other hand, a (probably lower) fraction UPf of contacts of untreated cases will be 
prophylaxed.  The total fraction of contacts prophylaxed (ignoring the fact that an 
individual may be a contact of multiple index cases) is then (1 )T TP T UPf f f+ − f , 
and the model in the main text may be recovered by setting TP UP Pf f f= = .  
Complete correlation between treatment and prophylaxis, in which only contacts 
of treated index cases receive prophylaxis, comes from setting .  
Note that in either case the total fraction prophylaxed is 

1; 0TP UPf f= =

Pf . 
 
The corresponding model equations would be: 
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Numerical solution of this model (Figure S1) confirms that in the extreme case 
in which treatment only applies to contacts of prophylaxed index cases, the 
effect is to reduce the net overall rate of antiviral use (with treatment not going 
to those in most need, namely those exposed to an unprophylaxed index 
case).  The shapes of the curves for total infections and mean incidence time 
are very similar to those in the main text Figure 4 in the main text, except that 
the scale has been increased by 50%, now considering antiviral use in 
between 0 and 60% of cases/contacts, rather than up to 40% as in the main 
text.   
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6.  Assessment of the impact of the quasi-stochastic approach to 
appearance of resistance. 
 
We have used a deterministic model for this study, and have incorporated the 
stochastic, possibly very rare, event of emergence of a transmissible resistant 
strain during treatment or prophylaxis according to a scheme described in 
METHODS, where transmission of resistance from an age class is allowed to 
begin after the expected number of resistant infections emerging de novo 
during treatment or prophylaxis in this age group, combined with the expected 
number of infections transmitted from other age groups exceeds one. In 
reality, of course, these dynamics are stochastic, and resistance may appear 
before its expected appearance time, or may appear but stochastically go 
extinct in its first or first several appearances.  To assess the impact of such 
stochastic variation, we varied the threshold for beginning transmission from 
an age group from 1/8 expected infections (Figure S2), to 1 (Figure 4, main 
text), to 8 (Figure S3).   
 
As the figures show, there is little qualitative difference across these varying 
thresholds.  Quantitatively, as one would expect, antiviral use is more 
effective, because resistance spreads later and less widely, as the threshold 
is increased.  Indeed, setting the threshold x times higher is similar (though 
not quite identical) to setting the de novo resistance rates and in the 
model x times lower.  This fact accounts for the strong resemblance between 
rows A-C in Figure S2 and rows D-F in Figure S3; the latter has a 100-fold 
higher de novo resistance probability and a 64-fold lower threshold. 

pc Tc
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7.  Code for the numerical solutions.  This code can be cut and pasted into 
Berkeley Madonna, a differential equation solver available in a free test 
version from www.berkeleymadonna.com
 
{Model for Lipsitch et al. PLoS Medicine} 
{ANTIVIRAL RESISTANCE AND THE CONTROL OF PANDEMIC INFLUENZA} 
METHOD euler 
 
STARTTIME = 0 
STOPTIME=500 
DT = 0.1 
 
 
 
{PART 1: BASIC EQUATIONS} 
{PART 1A: IN TERMS OF FORCES OF INFECTION (lambda)} 
d/dt(X[1..6]) = u - lambdaS[i] * (1-fp*ep)*X[i] - lambdaR[i]*X[i]- u*X[i] -lambdaS[i]*X[i]*fp*ep*ap 
d/dt(YSu[1..6]) = (1-fp)*(1-ft)*lambdaS[i]*X[i] - v*YSu[i] - u*YSu[i] 
d/dt(YSt[1..6]) = lambdaS[i]*X[i]*(fp*(1-ep-cp)+(1-fp)*ft*(1-ct)) - vt*YSt[i] - u*YSt[i] 
d/dt(YR[1..6]) =(lambdaS[i]*fp*cp*X[i] + ft*lambdaS[i]*(1-fp)*X[i]*ct +lambdaR[i]*X[i] - vr*YR[i] -
u*YR[i])*whirlwind[i] 
d/dt (Z[1..6]) = lambdaS[i]*fp*ep*ap*X[i]+ v*YSu[i]+vt*YSt[i]+vr*YR[i] - u*Z[i]  
 
{we use "whirlwind" for the Greek letter xi to avoid confusion with X and i} 
 
 
{PART 1B: THE FOI THEMSELVES} 
lamS1[1..6]=bSU[1,i]*ySu[i]+bST[1,i]*YSt[i] 
lambdaS[1]=arraysum(lamS1[*]) 
 
lamS2[1..6]=bSU[2,i]*ySu[i]+bST[2,i]*YSt[i] 
lambdaS[2]=arraysum(lamS2[*]) 
 
lamS3[1..6]=bSU[3,i]*ySu[i]+bST[3,i]*YSt[i] 
lambdaS[3]=arraysum(lamS3[*]) 
 
lamS4[1..6]=bSU[4,i]*ySu[i]+bST[4,i]*YSt[i] 
lambdaS[4]=arraysum(lamS4[*]) 
 
lamS5[1..6]=bSU[5,i]*ySu[i]+bST[5,i]*YSt[i] 
lambdaS[5]=arraysum(lamS5[*]) 
 
lamS6[1..6]=bSU[6,i]*ySu[i]+bST[6,i]*YSt[i] 
lambdaS[6]=arraysum(lamS6[*]) 
 
{NOTE: HERE WE USE yRt, not yR, to allow for whirlwind} 
lamR1[1..6] = bR[1,i]*yRt[i] 
lambdaR[1]= arraysum(lamR1[*]) 
 
lamR2[1..6] = bR[2,i]*yRt[i] 
lambdaR[2]= arraysum(lamR2[*]) 
 
lamR3[1..6] = bR[3,i]*yRt[i] 
lambdaR[3]= arraysum(lamR3[*]) 
 

http://www.berkeleymadonna.com/
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lamR4[1..6] = bR[4,i]*yRt[i] 
lambdaR[4]= arraysum(lamR4[*]) 
 
lamR5[1..6] = bR[5,i]*yRt[i] 
lambdaR[5]= arraysum(lamR5[*]) 
 
lamR6[1..6] = bR[6,i]*yRt[i] 
lambdaR[6]= arraysum(lamR6[*]) 
 
 
 
{PART 2: KEEP TRACK OF AUXILIARY QUANTITIES OF INTEREST} 
 
{PART 2A: SUMMING ACROSS TREATMENT GROUPS AND AGE GROUPS TO GET TOTALS 
AND PROPORTIONS, PLUS TOTAL POPULATION SIZE N} 
 
YS[1..6]=YSu[i]+YSt[i] 
SUMYS=arraysum(YS[*]) 
SUMYR=arraysum(YR[*]) 
SUMX=arraysum(X[*]) 
 
PROPYS=arraysum(YS[*])/N 
PROPYR=arraysum(YR[*])/N 
PROPX=arraysum(X[*])/N 
 
N =  SUMYS+SUMYR+SUMX+arraysum(Z[*])+arraysum(Zpro[*]) 
 
 
 
{PART 2B: CALCLUATIONS FOR FIGURE 2E-G} 
 
d/dt(cumIncS[1..6])=(1-fp)*(1-ft)*lambdaS[i]*X[i] +lambdaS[i]*X[i]*(fp*(1-ep-cp)+(1-fp)*ft*(1-ct)) 
d/dt(cumIncR[1..6])=lambdaS[i]*fp*cp*X[i] + ft*lambdaS[i]*(1-fp)*X[i]*ct +lambdaR[i]*X[i] {this is 
also used for calculation of whirlwind, later} 
SUMCumIncR=arraysum(cumIncR[*]) 
SUMCumIncS=arraysum(cumIncS[*]) 
PROPCumIncS=SUMCumIncS/N 
PROPCumIncR=SUMCumIncR/N 
PROPCumInc=PROPcumIncR+PROPcumIncS 
G=IF SUMCumIncS+SUMCumIncR>0 THEN SUMcumincR/(SUMCumIncS+SUMCumIncR) 
ELSE 0 {Cumulative fraction of cases resistant -- orange curves in Fig. 2E-G} 
 
 
ResAcquired[1..6] = lambdaS[i]*fp*cp*X[i] + ft*lambdaS[i]*(1-fp)*X[i]*ct  
ResTransmitted[1..6]=lambdaR[i]*X[i]  
SUMResAcquired=arraysum(ResAcquired[*]) 
SUMResTransmitted=arraysum(ResTransmitted[*]) 
H=IF (SUMResTransmitted+SUMResAcquired >0 )THEN SUMResAcquired/ 
(SUMResTransmitted+SUMResAcquired) ELSE 1 {Instantaneous proportion of resistant 
infections through acquired route -- black curves in Fig. 2E-G} 
 
 
 
{PART 2C: CALCULATING WHIRLWIND AND THE VALUE OF YRt, which is actually used for 
the forces of infection} 
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whirlwind[1..6]= switch(cumincR[i],1)  {We let the YR compartment stay at 1 (see the YR updater) 
and not transmit (see below) until cumulative incidence reaches 1} 
YRt[1..6]=whirlwind[i]*YR[i]  {the contribution of YRt to transmission is 0 until the compartment is 
allowed to "take off" at which point it is also set to 1} 
 
 
{PART 2D: CALCULATING MEAN TIME OF CASE INCIDENCE: DASHED CURVES IN FIG. 4} 
d/dt(SUMStrataIncTime[1..6])=TIME*(lambdaS[i]*fp*cp*X[i] + ft*lambdaS[i]*(1-fp)*X[i]*ct 
+lambdaR[i]*X[i] +(1-fp)*(1-ft)*lambdaS[i]*X[i] +lambdaS[i]*X[i]*(fp*(1-ep-cp)+(1-fp)*ft*(1-ct))) 
SUMIncTime=Arraysum(SUMStrataIncTime[*]) 
MEANIncTime=IF SUMCumIncS+SUMCumIncR>0 THEN 
SUMIncTime/(SUMCumIncS+SUMCumIncR) ELSE 0 
 
 
{PART 2E: MISCELLANEOUS} 
 
d/dt (Zpro[1..6]) = lambdaS[i]*X[i]*fp*ep*ap 
PROPZPRO=arraysum(Zpro[*])/N {here we keep track of individuals who are exposed and 
infected while on prophylaxis, becoming immune without being infectious} 
ZProPerRecovered=PROPZPRO/(1-PROPX) 
 
pRes = SUMYR/(SUMYS+SUMYR) {instantaneous proportion of cases that are resistant} 
 
{PART 3: PARAMETER VALUES} 
R0=1.8 
ft = 0.3 {frequency of treatment} 
fp = ft {0.3}{frequency of propylaxis} 
cp=2e-4 
ct=cp*10 
fitcost =0.1 
u = 0 {ignore birth and death} 
bSU[1..6,1..6]=beta[i,j] 
bSt[1..6,1..6]=bSu[i,j]*(1-ei)^(1-gamma) 
bR[1..6,1..6] = bSu[i,j]*(1-fitcost) 
v = 0.3 {3.33 day duration} 
vt = v/(1-ei)^gamma {duration for treated} 
vr=v {no duration fitness cost} 
ep = .85 {efficacy of prophylaxis in preventing infection (aveS)} 
ei = 0.66 
gamma =0 
ap = 0 
 
 
{PART 4: INITIALIZATIONS} 
init X[1..6]=pop[i]-1 
init YSu[1..6] = 1 
init YSt[1..6]=0 
init YR [1..6]=1 
init Z [1..6]= .0 
init Zpro[1..6]=0 
 
init cumIncR[1..6]=0 
init cumIncS[1..6]=0 
init SUMStrataIncTime[1..6]=0 
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{PART 5: DEMOGRAPHICS AND WAIFW MATRIX} 
 
k[1,1]=169.14 
k[1,2]=31.47 
k[1,3]=17.76 
k[1,4]=34.5 
k[1,5]=15.83 
k[1,6]=11.47 
k[1..6,1]=k[1,i] 
k[2,2]=274.51 
k[2,3]=32.31 
k[2,4]=34.86 
k[2,5]=20.61 
k[2,6]=11.5 
k[2..6,2]=k[2,i] 
k[3,3]=224.25 
k[3,4]=50.75 
k[3,5]=37.52 
k[3,6]=14.96 
k[3..6,3]=k[3,i] 
k[4,4]=75.66 
k[4,5]=49.45 
k[4,6]=25.08 
k[4..6,4]=k[4,i] 
k[5,5]=61.26 
k[5,6]=32.99 
k[5..6,5]=k[5,i] 
k[6,6]=54.23 
{k[1..6,1..6]=1} 
 
 
pop[1]=960000 
pop[2]=1265000 
pop[3]=1642000 
pop[4]=4857000 
pop[5]=3312000 
pop[6]=2477000 
{pop[1..6]=1.45e7/6} 
poptot=arraysum(pop[*]) 
 
beta[1..6,1..6]=R0/47.35*k[i,j]/poptot*(v+u) 
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Fig. S1: Structural sensitivity analysis for correlated prophylaxis and 
treatment.  This figure recapitulates Figure 4 in the main text – which 
shows the effect of varying effective reproductive numbers (RE) and of 
antiviral use on total attack rate (solid curves) and mean incidence time 
(dashed curves) – under the assumption that treatment is offered only to 
contacts of prophylaxed hosts.  This is an extreme assumption (the 
opposite extreme to the uncorrelated use of treatment and prophylaxis 
assumed in the main text) designed to explore the sensitivity of the model 
to this assumption.  Qualitative results are nearly identical to those shown 
in Figure 4, but the effect of antivirals is scaled down by roughly 1/3 for the 
parameters used here; note that the figures are nearly identical but the 
horizontal scale here goes up to 60% antiviral use, rather than 40% in Fig. 
4. 

 
Fig. S2: Sensitivity analysis for the threshold for takeoff of the resistant 

strain: low threshold.  This figure recapitulates Figure 4 in the main text 
under the assumption that resistant strains can spread from a given age 
group when the expected number of resistant infections has reached 1/8 
(rather than 1 in Figure 4).  The no-resistance case is not shown since this 
would be identical to Figure 4. 

 
 
Fig. S3: Sensitivity analysis for the threshold for takeoff of the resistant 

strain: high threshold.  This figure recapitulates Figure 4 in the main text 
under the assumption that resistant strains can spread from a given age 
group when the expected number of resistant infections has reached 8 
(rather than 1 in Figure 4).  The no-resistance case is not shown since this 
would be identical to Figure 4. 
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