
Discrete Sampling of the Coulomb Field

The procedures for mapping atoms from a protein into the
low-dielectric sphere (LDS) are based on spatial integrals over
electrostatic energy densities. In the geometry of the protein,
this integral is approximated by sampling points in a series of
shells centered at the atom of interest. We place two require-
ments on our sampling scheme. First, sampled points must
provide uniform coverage within each shell. To satisfy this
requirement, we use a point distribution based on an icosa-
hedral tessellation of the unit sphere (see ref. 1). Second, each
sample point should contribute equally to the discretized
integral. The contributions of individual points are controlled
through judicious choice of shell widths and point densities.
We note that the integrand of Eq. 2 of the manuscript (DW 2)
varies as r24 with distance r from the atom of interest. Because
surface area increases quadratically with r, we can achieve
equal contributions from sampled points by increasing shell
width, and decreasing points per shell, linearly with r. Assum-
ing uniform dielectric constant, the contribution of a shell
bounded by r1 and r2 to the integral in Eq. 2 is
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Therefore, the radius at which sample points are taken for each
shell (requiv) is simply the geometric mean of the radial bounds.
Calculations in the manuscript used a set of 24 shells of linearly
increasing width that covered the region from each atom’s
Born radius to a radius of 3R, where R was chosen such that
4y3pR3 gave the Connolly volume of the protein (2). Five-
hundred and fourteen points were sampled in the first shell,
and this value decreased linearly with requiv for each shell.

3-Body Surface Burial

The fine-mapping procedure for pairs of atoms (see Materials
and Methods) requires knowledge of the fraction of a probe
shell l buried within the union of the Born radius of an atom
(shell m) and the boundary of the LDS (shell n). This is an
example of the general problem of determining the accessible
surface area of a collection of spheres. Richmond has given
expressions for the solution for an arbitrary number of spheres
(3). We present a summary for three shells, using his notation.
We consider only the case in which some portion of shell l is
intersected by both shells m and n, but neither region of
intersection is completely contained within the other. Without
loss of generality, we place shell l at the origin, shell m on the
z axis, and shell n in the x–z plane. In the following, y
coordinates will be omitted, and coordinate pairs will refer to
{x, z}. We take as given the coordinates for each shell: {0, 0}
for l, {0, cm} for m, and {an, cn} for n. Radii for the shells are
denoted by rl, rm, and rn. The (positive definite) distances of
the center of shells m and n from the origin are denoted dm and
dn. This information is sufficient to determine the perpendic-
ular distances from the origin of the circles resulting from the
intersections of shells m and n with shell l:
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as well as the radii of these circles:
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By applying the Gauss–Bonnet theorem to a collection of
spheres, Richmond has shown that ^, the fraction of shell l
occluded by the pair of shells m and n, can be written as

^ 5
2p 2 2V 2 kmDsm 2 knDsn

4p
. [S6]

V is the exterior angle formed by the two circles of intersection
where they cross. km and kn are the (constant) geodesic
curvatures along the circles of intersection, and Ds is the arc
length of each circle that is not enclosed in another shell.
Expressions for V, km, kn, Dsm, and Dsn in terms of the
geometric parameters are given by Richmond:
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Evaluation of Eqs. S7a–S7e from the geometric primitives and
substitution into Eq. S6 yields the fraction of shell l buried in
either shell m or n.

Application of Image Transformations to Shell Charges

Definitions. The symbols R, «s, and «p denote, respectively,
the radius of the LDS used in the Tanford–Kirkwood model,
the dielectric constant assigned to the solvent, and the dielec-
tric constant assigned to the protein interior. Let (q)uxWq

denote
a point charge of magnitude q located at position xWq. Let (s,
bq)uxWq

denote a shell of uniform surface charge s (total charge
q 5 4pbq

2s) and radius bq centered at position xWq. Let (s, bq,
xWu, ua 3 ub)uxWq

denote a polar section of a shell of uniform
surface charge s, radius bq, polar axis xWu, bounded by the polar
angles ua and ub, and centered at position xWq. Finally, let
F[r(xW)](xWobs) denote the electrostatic potential of charge dis-
tribution r(xW) at position xWobs.

Shells Crossing the LDS Boundary. Consider a shell charge (s,
bq)uxWq

that crosses the LDS boundary [uxq 2 bqu , R , (xq 1 bq)].
Knowledge of several quantities is required for application of
image transformations Eqs. 6a–6d of the manuscript in this case.
First, the polar angle u* at which (s, bq)uxWq

intersects the LDS is
evaluated by using the law of cosines (unless otherwise specified,
polar angles are defined relative to the polar axis xWq):
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Next, we define Fin
LDS and Fout

LDS to be the surface fractions of
(s, bq)uxWq

that lie, respectively, inside and outside of the LDS.
By integration of surface area in polar coordinates, these
quantities can be evaluated:
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Finally, we define ^r21& to be the average inverse radius of the
portion of (s, bq)uxWq

that lies exterior to the LDS. Again by
surface integration, ^r21& is evaluated as
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Inversion Operator Identity. Define IR,C to be the inversion
operator that maps a charge of magnitude q at polar coordi-
nates (r, u, f) into a charge of magnitude C(Ryr)q at polar
coordinates (R2yr, u, f). Let ri(xW) and rj(xW) represent two

charge distributions that lie entirely inside (or outside) a
sphere of radius R, and define WElec[ri(xW), rj(xW)] to be the

electrostatic potential energy of their interaction in vacuo. The
property of reciprocity of the image-charge solution for a
conducting sphere (4) provides the following relationship:
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It follows directly from Eq. S11 that
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where xWobs,inv denotes the inverse point, colinear with xWobs and
the LDS center, at radius R2yxobs.

Image Shell Solutions. Using the identities described above
and Eqs. 6a–6d of the manuscript, the potential of a shell
charge (s, bq)uxWq

at position xWobs inside or outside the LDS can
be approximated by summing in vacuo the potentials of a set
of point charges, shell charges, and shell charge sections as

where xWinv denotes the inverse point, colinear with xWq and the
LDS center, at radius R2yxq. Following ref. 4, the electrostatic
potential in vacuo of a partial charge shell (s, bq, xWu, ua3 ub)uxWq

is numerically evaluated:

where robs and uobs are the polar coordinates of xWobs in a system
with its origin at xWq and polar axis xWu. Pl( ) denotes the Legendre
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polynomial of order l. The series in Eq. S14 is truncated at the
first term whose unsigned ratio to the sum of previous terms
falls below 1026, with a maximum of 64 terms.

Interactions of Shell Charges. The interaction of two shell
charges i and j can fall into one of three categories: (i) neither shell
charge crosses the dielectric boundary; (ii) one shell charge
crosses the LDS boundary and does not intersect the other shell;
or (iii) both shell charges cross the LDS boundary, or one shell
crosses the LDS boundary and intersects the other shell. If a
single shell crosses the LDS boundary, it is taken to be j without
loss of generality. For category i, Eqs. S13a–S13d and Eq. 1 of the
manuscript fully describe the interaction. For category ii, the
interaction of shell i with the image shells of j (Eqs. S13e and
S13f) is evaluated by using Eq. 1 of the text, and the interaction
of shell i with the image caps of shell j is determined by evaluating
Eq. S14 at the center of shell i. For category iii, the interaction of
shell i with the image shells of j is evaluated by using Eq. 1 of the
text, and the interaction of shell i with the image caps of shell j is
evaluated by averaging Eq. S14 over points on the surface of shell
i. To perform this averaging, a set of points that uniformly covers
shell i is generated by using the spherical tessellation of Eisen-
haber (1). As noted in the text, all interactions between shells with
surfaces separated by .2 Å are treated as though between point
charges.

Energy Evaluation for Multicopy Sampling

Multicopy sampling algorithms require knowledge of two types of
energy terms: the self energies of individual side-chain rotamers

and the interaction energies of rotamer pairs. The self energy of
rotamer i at residue position j, Wij, is defined to be the summed
self energies of its constituent atoms and their interaction with the
fixed protein backbone. The interaction of rotamer i at position
j and rotamer i9 at position j9, Iij,i9j9, is evaluated as the summed
interaction energies of the constituent atoms of i and i9.

Three terms constitute the energy function for all calcula-
tions: the modified Tanford–Kirkwood electrostatic potential,
WElec, the CHARMM19 Lennard-Jones potential, WLJ, and a
protonation potential, WH,p. The protonation potential is
non-zero only at titratable sites and contributes only to the self
energies of protonated rotamers. For deprotonated rotamers,
self energies are evaluated: Wij,deprotonated 5 W ij,deprotonated

Elec 1
W ij,deprotonated

LJ .
The self energies of protonated rotamers are defined rela-

tive to the self energy of the most commonly occurring
deprotonated rotamer (denoted i*). Thus, the self energies of
protonated rotamers are evaluated: Wij ,protonated 5
Wi*j,deprotonated 1 W ij

H, p. W H, p is evaluated by using the ther-
modynamic cycle illustrated in Fig. 4.

Interaction energies for protonated and deprotonated rota-
mers are calculated by applying the WElec and WLJ potentials
to the appropriate protonated and deprotonated atom sets.
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FIG. 4. Thermodynamic cycle for calculation of WH, p. The energy of protonating a site in the protein is derived from a thermodynamic cycle
connecting a titrating site in a protein (top) to an equivalent site in an isolated N-formyl, N-methyl amino amide (FMAA) of known pKa (bottom).
The protonation potential consists of the transfer free energy of the deprotonated FMAA from the protein into aqueous solution, W deprotonated

p3aq ,
the free energy of protonation of the FMAA in aqueous solution, WH,aq, and the transfer free energy of the protonated FMAA back into the protein,
W protonated

aq3p . WH,aq is evaluated as 2.3zRT(pH-IpKa), where IpKa is the intrinsic pKa of the appropriate FMAA. The deprotonated FMAA fragment
in the protein (upper left) and both FMAA fragments in solution (bottom left and right) are placed in the most commonly occurring side-chain
rotamer conformation of the amino acid (i* in the text). For the purpose of calculating transfer energies, the protein is represented by its polyglycine
backbone stripped of all side-chain atoms. The dielectric boundary of the protein is defined by the molecular surface of the appropriate
experimentally determined structure (including side chains).
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