
Supplementary Methods for Reconstructing

dynamic regulatory maps

1 Probabilistic Model

1.1 Model Overview

The model DREM uses to integrate time series expression data with static ChIP-
chip or motif data is based on a specific instance of an Input-Output Hidden
Markov Model (IOHMM) (Bengio & Frasconi, 1995) which we will denote as M
(also see Figure 1). Formally M is a tuple (H,E,Ψ,Θ, n, γ) where

• n is a parameter for the number of discrete time points that M will be
modeling.

• H is a set of hidden states. Each hidden state, h, is associated with a
Gaussian output distribution, fh. Each hidden state h ∈ H is associated
with one time point, denoted h.t, where t ∈ {0, 1, ..., n− 1}.

• Θ is the set of parameters for the output distributions. For each hidden
state h ∈ H there is an element (µh, σh) ∈ Θ corresponding to the mean
and standard deviation of the Gaussian distribution fh.

• E contains the set of directed edges connecting hidden states of H, corre-
sponding to valid transitions among hidden states. If and only if (ha, hb) ∈
E then there is an edge from hidden state ha to hidden state hb. The set
of edges, E, connecting the hidden states, H, are constrained to enforce
a tree structure. Each hidden state is constrained to have at most γ chil-
dren. Formally we assume there is exactly one state h ∈ H with h.t = 0
which forms the root of a tree. For any state a ∈ H with a.t < n − 1
there must be at least one hidden state b ∈ H with (a, b) ∈ E satisfying
a.t+ 1 = b.t and no more than γ such b. For any hidden state b ∈ H with
b.t > 0 there must be exactly one state a such that (a, b) ∈ E, addition-
ally the relation a.t+ 1 = b.t must be satisfied for that state. If paths are
allowed to be merged as a post-processing step discussed below, then this
last requirement is relaxed so that there may be more than one such state
a.

• Ψ contains the parameters controlling transition probabilities between hid-
den states. If a state h ∈ H has two or more children, that is there are

1

a, b ∈ H such that (h, a) ∈ E and (h, b) ∈ E and a 6= b, then there is
an element ψh ∈ Ψ. ψh is a vector of parameters for a logistic regression
classifier.

A logistic regression classifier (Krishnapuram et al, 2005) associated with state
h is used to map a static input vector for a gene g, Ig, to transition probabilities
among its children states. For this paper the jth element of Ig is 1 if tran-
scription factor j is predicted to regulated gene g and 0 otherwise. In general
this prediction can be based on ChIP-chip data, motif data, or a combination
thereof. We consider here the case γ = 2, which is the setting of γ used in this
paper. If the gene g at time i − 1 is in a state h that has child states a and b,
then the probability it is in state a that at time point i can be written as

1

1 + e−ψh.INT−
∑

x
ψh.x×Ig.x

where the sum is over each element, Ig.x, of Ig and ψh.x is the correspond-
ing element of ψ. ψh.INT is the intercept parameter of the logistic regression
classifier.

As an example suppose our static input vector is based on four transcription
factors GCN4, CBF1, FHL1, and SFP1. Suppose the static input vector for
gene g is

(Ig.GCN4, Ig.CBF1, Ig.FHL1, Ig.SFP1) = (1, 1, 0, 0).

Further suppose that

ψh = (ψh.GCN4, ψh.CBF1, ψh.FHL1, ψh.SFP1, ψh.INT) = (0.925, 0.607,−1.806,−2.018, 0.676)

then for a gene g in state h the probability of transitioning to state a is

1

1 + e−ψh.INT−
∑

x
Ig.x×ψh.x

=
1

1 + e−0.676−0.925×1−0.607×1+1.806×0+2.018×0
= 0.901

In contrast if Ig = (0, 0, 1, 1) then the probability of the gene transitioning to
state a is 0.041. If γ is greater than 2, then the logistic regression classifier
naturally generalizes to the multi-class case (Krishnapuram et al, 2005).

We note that requiring each hidden state to be associated with exactly one
time point and the constraints on transitions among the hidden states is specific
to our application and not a general property of an IOHMM. Also in a general
IOHMM the output distribution can be dependant on the input vector and the
input vector can be different at each time point both of which are not the case
in this application.

1.2 Likelihood Function

Let og = (og(1), ..., og(n − 1)) be the log ratio expression values for gene g at
time points 1 to n − 1 relative to a time point 0 control. Define Hi as the

2

hidden state variable at time t. Denote the transition probability for a gene g
to transition to state hb at time point t given that it is in hidden state ha at
time point t as P (Ht = hb|Ht−1 = ha, Ig). This probability is defined as 0 if hb
is not a child of ha and 1 if hb is the only child of ha. If ha has two or more
children then the transitions are probabilistic and depend on the static input
vector Ig. The mapping from static input vector Ig to transition probabilities
for a hidden state ha are determined by a trained logistic regression classifier
(Krishnapuram et al, 2005). The likelihood density, r, for a set of genes G for
the model M is

r(G|M) =
∑
g∈G

log
∑
q∈Q

n−1∏
t=1

fq(t)(og(t))
n−1∏
t=1

P (Ht = q(t)|Ht−1 = q(t− 1), Ig)

Q is the set of all paths of hidden states of length n starting from the root with
non-zero probability. For a path q ∈ Q, q(i) is the hidden state of the path
at time point i. The first product is the product of the output densities for
the expression values and a given sequence of hidden states. If an expression
value is missing then its corresponding output density term is omitted from the
product. The second product is the product of transition probabilities for a
given sequence of hidden states. The inner sum is over all paths with non-zero
probability. The outer sum is over all genes in G.

2 Model Learning

2.1 Parameter Learning

For a given tree structure determined by H and E finding the setting of the
parameters that globally optimizes the equation above is a non-linear optimiza-
tion problem and in general cannot be guaranteed to be found. However a local
maximum can be found using a modification of the Baum-Welch training algo-
rithm for a regular Hidden Markov Model (Durbin et al, 1998). For our model
above during each maximization step of the Baum-Welch algorithm each logis-
tic regression classifier is retrained. The retraining algorithm was based on the
method of (Krishnapuram et al, 2005), which uses an L1 penalty on the coeffi-
cients to promote sparsity on the number of features used by the classifier. The
regularization parameter associated with the L1 penalty was set to one. When
training a classifier, for every gene in the training set the classifier is given a
weighted example of the gene transition to each child state. The weight of the
example is the probability of that gene going through that hidden state based
on the current values of all the parameters in the model.

2.2 Structure Learning

To find a structure for the model, as determined by (H,E), a search starts from a
single chain of hidden states. The algorithm then performs a search over various
structures. To train and test these structures, the algorithm splits the set of

3

genes into two sets, Gtrain and Gtest. Gtrain contains 75% of the genes and these
genes are used for training the parameters of structures under consideration.
The remaining 25% of genes, Gtest, are used for scoring the structures. The
parameter training tries to find settings of Ψ and Θ that maximize r(Gtrain|M)
while the score for a model, M , is r(Gtest|M). The search considers adding
and deleting paths to the structure while r(Gtest|M) increases. The search
algorithm is summarized in the pseudocode below. After no more paths can
be added or deleted from the model without improving the test set score, the
algorithm removes weakly supported paths that might be overfitting Gtest. To
do this the algorithm randomly resplits the set of genes used for training and
testing, generating a new test set test′. The algorithm then deletes any path if
the score for the retrained model with the path deleted, Mnew, compared to old
model, Mold, satisfies

(1 + κ)r(Gtest′ |Mnew)− r(Gtest′ |Mold) ≥ ζ

where κ ≥ 0 and generally small and ζ ≤ 0. Here we set κ to 0.0015 and ζ = 0,
increasing κ or decreasing ζ would have the effect of removing more of the least
supported splits. If multiple paths satisfy the above property, then the path
resulting in the largest score is selected first. Once a path has been selected
Mnew becomes Mold and more paths can be deleted if they satisfy the above
property. A similar procedure is used to delay splits for which the split could
have been placed one time point later with no significant effect on the score.

Optionally the algorithm can also merge paths which share a common split.
An example of two paths being merged is shown in Section 10 of the Supple-
mentary results. The criteria to accept a model with two paths merged is the
same as above except possibly with different choices of the parameters. To
demonstrate a merging in the DTT example we set for the merging criteria κ
to 0.0025 while ζ was still 0. If the algorithm decides to merge two paths, then
the merged path can then be merged with another path in which it now shares
a split. Once a path is merged it is not allowed to split again.

The algorithm then combines the train and test sets and retrains the model
on the combined set without changing the structure. Genes are then assigned to
their most likely path using the Viterbi algorithm (Durbin et al, 1998). Paths
which have less than five genes assigned are removed. The splits and paths are
then scored for association with transcription factors (next subsection). It is
important to note that the map built will depend on the random training and
test splits. Ideally thus the algorithm should be run several times with different
random seeds generating different train and test splits of the data.

2.3 Pseudocode for Model Learning

Model Learning Algorithm
1. Partition gene set into a train set and test set.
2. Initialize the tree structure (H,E) to be a single chain, then train chain,

and compute test score.

4

3. While test score improves do
a. (H’,E’) <- (H,E)
b. For each hidden state, h, that can have another child do

i. Temporarily add a single chain of hidden states from h to (H’,E’)
ii. Train the temporary model from step 3.b.i
iii. If test set score is best found so far, then

let (H,E) be the model structure from step 3.b.i
c. (H’,E’) <- (H,E)
d. For each hidden state, h, in H’, which has a sibling in H’

i. Temporarily remove h and all descendants from (H’,E’)
ii. Train the temporary model from step 3.d.i
iii. If the test set score is at least as good as the best so far,

then let (H,E) be the model structure from step 3.d.i
If (H,E) was updated during 3.d.iii, then repeat step 3d

4. Randomly resplit train and test data.
5. Delete weakly supported paths, delay appropriate splits,

and optionally merge appropriate paths.
6. Train parameters of model using all genes.
7. Assign genes to paths using the viterbi algorithm.
8. Remove any path with fewer than 5 genes.

3 Transcription Factor Scoring

Consider a transcription factor f , a split S, and path A out of a split. Let nS
be the total number of genes assigned to the path into the split. Let nA be the
total number of genes on path A out of the split. Let cS be the total number of
genes into the spilt predicted to be regulated by transcription factor f , and let
cA be the number of these genes on path A. The score for transcription factor
f for split S on path A is

min(cS ,nA)∑
i=cA

(
cS

i

)(
nS−cS

nA−i
)(

nS

nA

)
The lower the score the stronger the association of a transcription factor with a
path out of a split. This score is computed using the hypergeometric distribu-
tion however it does not represent true p-values since the transcription factor
information was used to learn the model and assign genes to paths.

Overall enrichment for a transcription factor f along path A can be com-
puted similarly, which takes into account enrichment based on filtering and prior
splits. Let M be the total number of genes before filtering and cM be the total
number of genes predicted to be regulated by transcription factor f . The overall
score for transcription factor f on path A is

min(cM ,nA)∑
i=cA

(
cM

i

)(
M−cM

nA−i
)(

M
nA

)
5

4 References

1. Bengio Y, Frasconi, P. (1995) An Input Output HMM Architecture. Ad-
vances in Neural Information Processing 7, 427-434.

2. Krishnapuram B, Figueiredo M, Carin L, and Hartemink A. (2005) Sparse
multinomial logistic regression: Fast algorithms and generalization bounds.
IEEE Trans Pattern Anal Mach Intell. 27, 957-968 .

3. Durbin R, Eddy S, Krogh A, Mitchison G. (1998) Biological Sequence Anal-
ysis. Cambridge University Press, Cambridge.

6

	Probabilistic Model
	Model Overview
	Likelihood Function

	Model Learning
	Parameter Learning
	Structure Learning
	Pseudocode for Model Learning

	Transcription Factor Scoring
	References

