
Tissue-specific regulatory elements in mammalian promoters:

Supplementary information

To identify mammalian tissue-specific elements we (1) identify transcripts with tissue-specific expres-
sion, (2) map transcripts to proximal promoters, and (3) analyze promoters to identify common binding site
motifs and cis-regulatory modules. Our approach builds on previous work to identify motifs in promoters of
co-expressed transcripts. Co-regulated transcripts (e.g. tissue-specific) are likely to be controlled by similar
machinery. We identify common motifs and modules that distinguish promoters of tissue specific transcripts
from other promoters.

1 Transcripts and promoters under tissue-specific regulation

We considered transcripts tissue-specific if they play a special role in a specific tissue or small set of tissues.
Tissue-specificity is a function of regulation, and a particular transcript may be expressed or even specific to
more than one tissue. We assumed that tissue-specific function is associated with tissue-specific regulation.

To build sets of tissue-specific transcripts, we combined information from GNF SymAtlas (Su et al.,
2004) (for both human and mouse), the Hughes Toronto microarrays (Zhang et al., 2004b) (for mouse),
EST data from dbEST (Boguski et al., 1993) and membership in specific GO categories (Ashburner et al.,
2000). We used key-word searches in the NCBI Nucleotide database and the Eukaryotic Promoter Database
(EPD) (Perier et al., 1998) for guidance only.

We used multiple data sources to circumvent problems associated with each individual source, and add
robustness to tissue-specific transcript selection. For example, expression of certain transcripts in dbEST
may only have been measured for a small number of tissues, andare not a robust indicator of specificity.
The GNF microarray data includes two replicates. Ignoring highly variable observations within and between
replicates leads to incomplete data; considering such observations is equally problematic. Multiple sources
of information were combined using a voting system, and eachsource contributed at most one vote. We
showed that orthologs of transcripts with multiple votes for tissue-specific regulation are significantly more
likely to have evidence for tissue-specific regulation, even when Gene Ontology votes were discarded. Be-
cause ortholog information did not have a vote for tissue specificity, significantly more frequent verification
by comparative genomics suggests that selection accordingto multiple evidence is more reliable.

The construction of tissue specific sets is a complex and error prone task. Voting systems need to
minimize dependence between annotation sources, are sure to pass over tissue specific transcripts because
of inconclusive evidence, and should treat paralog transcripts with special care. Because of varying data type
and experiment quality, we varied thresholds used for assigning votes to evidence. As additional sources of
expression information become available and experiment quality become more uniform, thresholds used to
assign votes will become standard. One example for possiblyerroneous tissue-specific annotation is evident
in the mouse pancreas set, where 11 genes from the Klk family received a vote and were included in the
tissue specific set. The votes originate from membership isa pancreas-related GO function, which was
annotated for the human ortholog (the mouse genes share the same ortholog). We had no expression-based
evidence for pancreas-specific regulation in our mouse data. The genes are highly similar and may be the
product of a recent duplication. None of our mouse-pancreas-specific motifs or modules were identified in
the Klk promoters, and their inclusion increased our error estimates.
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1.1 microarray data

Because most of the probes called present in the experimentsare associated with RefSeq transcripts, and
because in general our characterization of promoters and first introns is better for RefSeqs than other anno-
tations (almost 100% of experimentally verfied promoters have RefSeq annotations), we decided to focus
exclusively on RefSeq transcripts (see Table 11). Moreover, there is evidence that expression of different
transcripts in different tissues is widespread (Fuchs et al., 1999; Johnson et al., 2003; Zhang et al., 2004a),
and that different transcripts can have different first exons, and hence different promoters (Yamashita et al.,
2006).

To associate probes with RefSeq transcripts, we mapped the probes back to the genomes (NCBI hu-
man genome assembly Hs33 and mouse genome assembly v3C dating to February 2003 for GNF and
Mm5 for the Hughes Toronto array) to identify the probe locations and exon targets. GNF and GeneNote
probes (Affymetrix gene chips) are 25 bases long and probe-transcript mappings were required to be perfect
matches. The Hughes Toronto array probes are 40-bases long and mappings were required to have 39 base
matches. Probes that matched more than 3 DNA targets were discarded. We chose this simple criteria as a
compromise between data loss and quality. Using multiple probes per transcript and repeated experiments
on the same tissue samples allows for correcting imprecise expression intensity measurements for a particu-
lar transcript target. We used the resulting probe-to-exonmap to identify the RefSeq transcripts targeted by
each probe, and assign a probe set to each transcript.

Probes with detection ability that is not substantially different than the corresponding mismatch probe
are suspect. To obtain A/P calls for the transcripts, we usedthe A/P calls of the corresponding probe sets. If
in a particular tissue the probe set A/P calls disagreed, we removed the transcript from further consideration,
otherwise we called the transcriptpresentor absent. The number of excluded transcripts due to this pruning
operation ranged from under 5% to 80% of potential tissue-specific transcripts. 285 transcripts had unusually
high intensity level (above 3 standard deviations from mean) in the GNF data for human skeletal muscle.
227 (80%) of these were rejected because of A/P calls. 58 of the 227 were reinstated because of evidence
from other experiments. Obtaining intensities andp-values for a transcript is more straight-forward: we
took the mean intensity and geometric-meanp-value of its corresponding probes.

To identify transcripts with unusually high intensity in few tissues, we calculated the mean and standard
deviation of of the normalized intensity across all experiments (for the GNF data mouse and human are
evaluated separately). For the GNF and GeneNote data, we considered transcripts that are called present
and have intensity greater than three standard deviations from the mean intensity to be specific. For the
Hughes Toronto array, where variability between probe reads is higher, we called transcript specific if their
normalized intensity was greater than 2 and greater than tenstandard deviations from the mean, and they
were called present. The Hughes Toronto array did not include experiments for mouse CD4 T-cells, and
GeneNote did not include experiments for human CD4 T-cells and testis.

1.2 EST Data

dbEST is a depository for expressed sequence tags, maintained by NCBI (Boguski et al., 1993). When
ESTs are derived from specific tissues, this information isspecified in dbEST. Because of the nature of
tissue sample collection, source variability, and becausemost ESTs are derived from tissue cocktails and
not all experiments are focused on keeping tissue purity, dbEST tissue classification may be imprecise.
However, when multiple EST libraries describe a particulargene as expressed in a particular tissue and
this gene was detected in few other tissues, we considered the dbEST evidence strong enough to cast votes
for tissue specificity. We considered evidence for tissue specificity of a gene as evidence for all alternative
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transcripts of this gene. For a dbEST vote in a given tissue, at least 3 EST libraries had to describe expression
observation in this tissue, and more than 50% of tissue-related observations had to be in this tissue.

1.3 GO Terms

We associated a set of GO Terms with each tissue. This was doneby compiling a set of keywords for each
tissue (e.g. “renal” was associated with Kidney), and searching GO Term names and definitions for those
keywords. For each tissue, we produced a set of GO Terms that were subsequently reviewed to ensure that
the context of the keywords was appropriate. Each gene annotated with at least one GO Term associated with
a tissue received one positive vote for specificity in that tissue. Similarly to EST evidence, we considered
each point of evidence for a gene as evidence for all alternative transcripts of this gene.

1.4 Identifying factors expressed in tissues

To assist interpretation of results we assembled factors with evidence of expression in each tissue according
SymAtlas, Hughes Lab, GeneNote and dbEST data. These lists are available in TCat. A transcript was
considered expressed in a microarray experiment if it received a present call, regardless of intensity values.
For dbEST, a transcript was considered expressed if any associated ESTs were observed at least once in that
tissue.

1.5 Transcripts with strong evidence for tissue-specific regulation

In all tissues except CD4 T-cells, orthologs of transcriptswith multiple votes for tissue-specific regulation
were more likely to have evidence for specific regulation inthat tissue. This suggests that the false-positive
rate for calling a transcript tissue-specific is much lowerwhen based on multiple votes. To compare the
predictive power of orthologs, we assembled all pairs of transcripts and their orthologs, where at least
one member had evidence for tissue-specific regulation. Every transcript appeared in only one pair, and
transcripts with no known ortholog were eliminated. The pairs can be partitioned into 2 sets, those pairs
that include a transcript with multiple votes and those who do not. We then used a hypergeometric fixed
marginal contingency table test (Fisher exact) to compare the proportion of pairs (in each of the two sets)
where each of the transcripts had evidence for tissue-specific regulation. The fixed marginal contingency
tablep-value follows the hypergeometric distribution (Agresti,1992). The two-sidedp-value for the table is
the sum of the probabilities of all tables that are at least asextreme.

In the main body of the paper we gave the list of genes and orthologous transcripts with multiple votes
for skeletal muscle-specific regulation in both human and mouse. Here, in Tables 5 to 10 we give the corre-
sponding lists for the other 6 tissues. Note that each promoter set included 100 promoters, including some
promoters that correspond to transcripts with only one votefor tissue-specific regulation. The distribution
of votes per transcript in the set corresponding to analyzedpromoter sets is given in Figure 3.

1.6 Obtaining promoter sequences

Regulatory elements can exist almost anywhere in the genome, but they are highly concentrated in proximal
promoters. In past work (Smith et al., 2005b,a) we have been successful at identifying previously charac-
terized motifs for factors known to play tissue-specific regulatory roles. Promoter quality (i.e. confidence
in the transcription start site) has a large impact, and poorquality promoters may hurt motif discovery even
more than poor quality sets of tissue specific transcripts (e.g. those containing ubiquitous or incorrectly
assigned transcripts).
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Figure 3. The distribution of votes per transcript corresponding to analyzed promoters sets. Each set in-
cluded 100 promoters, and each promoter corresponded to a transcript with evidence for tissue specific
regulation from possibly 0 to 4 sources. We display the number of transcripts (y-axis) with the given num-
ber of votes for tissue-specific regulation (x-axis). Distribution that are skewed to the left describe promoter
sets with weaker evidence for tissue-specific regulation, and those that are skewed to the right describe
promoter sets with stronger evidence.
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Symbol Name Human RefSeq Mouse RefSeq Votes
HMGCS2 3-hydroxy-3-methylglutaryl-CoenzymeA synthase 2(mitochondrial) NM_005518 NM_008256 8
VTN vitronectin (serum spreading factor, somatomedin B, complement S-protein) NM_000638 NM_011707 7
SERPINC1 serpin peptidase inhibitor, clade C (antithrombin), member 1 NM_000488 NM_080844 7
KNG1 kininogen 1 NM_000893 NM_023125 7
HRG histidine-rich glycoprotein NM_000412 NM_053176 7
BAAT bile acid Coenzyme A: amino acid N-acyltransferase (glycine N-choloyltransferase) NM_001701 NM_007519 7
APOH apolipoprotein H (beta-2-glycoprotein I) NM_000042 NM_013475 7
ADH1A alcohol dehydrogenase 1A (class I), alpha polypeptide NM_000667 NM_007409 7
UGT2B4 UDP glucuronosyltransferase 2 family, polypeptideB4 NM_021139 NM_152811 6
TDO2 tryptophan 2,3-dioxygenase NM_005651 NM_019911 6
PROC protein C (inactivator of coagulation factors Va and VIIIa) NM_000312 NM_008934 6
PLG plasminogen NM_000301 NM_008877 6
LIPC lipase, hepatic NM_000236 NM_008280 6
LCAT lecithin-cholesterol acyltransferase NM_000229 NM_008490 6
ITIH3 inter-alpha (globulin) inhibitor H3 NM_002217 NM_008407 6
FABP1 fatty acid binding protein 1, liver NM_001443 NM_017399 6
CPB2 carboxypeptidase B2 (plasma, carboxypeptidase U) NM_016413 NM_019775 6
ARG1 arginase, liver NM_000045 NM_007482 6
AKR1C4 aldo-keto reductase family 1, member C4 NM_001818 NM_030611 6
SLC2A2 solute carrier family 2 (facilitated glucose transporter), member 2 NM_000340 NM_031197 5
PAH phenylalanine hydroxylase NM_000277 NM_008777 5
NR1H4 nuclear receptor subfamily 1, group H, member 4 NM_005123 NM_009108 5
MST1 macrophage stimulating 1 (hepatocyte growth factor-like) NM_020998 NM_008243 5
MAT1A methionine adenosyltransferase I, alpha NM_000429 NM_133653 5
ITIH4 inter-alpha (globulin) inhibitor H4 (plasma Kallikrein-sensitive glycoprotein) NM_002218 NM_018746 5
ITIH2 inter-alpha (globulin) inhibitor H2 NM_002216 NM_010582 5
HPX hemopexin NM_000613 NM_017371 5
HAO1 hydroxyacid oxidase (glycolate oxidase) 1 NM_017545 NM_010403 5
GNMT glycine N-methyltransferase NM_018960 NM_010321 5
FETUB fetuin B NM_014375 NM_021564 5
F13B coagulation factor XIII, B polypeptide NM_001994 NM_031164 5
F10 coagulation factor X NM_000504 NM_007972 5
EBP emopamil binding protein (sterol isomerase) NM_006579 NM_007898 5
CYP2E1 cytochrome P450, family 2, subfamily E, polypeptide1 NM_000773 NM_021282 5
CYP2C9 cytochrome P450, family 2, subfamily C, polypeptide9 NM_000771 NM_007815 5
CRP C-reactive protein, pentraxin-related NM_000567 NM_007768 5
CPN1 carboxypeptidase N, polypeptide 1, 50kD NM_001308 NM_030703 5
C8A complement component 8, alpha polypeptide NM_000562 NM_146148 5
C6 complement component 6 NM_000065 NM_016704 5
ASS argininosuccinate synthetase NM_000050 NM_007494 5
ASGR2 asialoglycoprotein receptor 2 NM_080914 NM_007493 5
APOM apolipoprotein M NM_019101 NM_018816 5
APOC3 apolipoprotein C-III NM_000040 NM_023114 5
APOA2 apolipoprotein A-II NM_001643 NM_013474 5
APCS amyloid P component, serum NM_001639 NM_011318 5
ALDOB aldolase B, fructose-bisphosphate NM_000035 NM_144903 5
AGXT alanine-glyoxylate aminotransferase NM_000030 NM_016702 5
ADH6 alcohol dehydrogenase 6 (class V) NM_000672 NM_007409 5
ADH1B alcohol dehydrogenase IB (class I), beta polypeptide NM_000668 NM_007409 5
SLCO1B1 solute carrier organic anion transporter family, member 1B1 NM_006446 NM_020495 4
SLC22A1 solute carrier family 22 , member 1 NM_153187 NM_009202 4
SERPING1 serpin peptidase inhibitor, clade G NM_000062 NM_009776 4
SEC14L2 SEC14-like 2 (S. cerevisiae) NM_012429 NM_144520 4
SDS serine dehydratase NM_006843 NM_145565 4
RGN regucalcin (senescence marker protein-30) NM_152869 NM_009060 4
POR P450 (cytochrome) oxidoreductase NM_000941 NM_008898 4
PMVK phosphomevalonate kinase NM_006556 NM_026784 4
PEMT phosphatidylethanolamine N-methyltransferase NM_148173 NM_008819 4
ORM1 orosomucoid 1 NM_000607 NM_008768 4
ITIH1 inter-alpha (globulin) inhibitor H1 NM_002215 NM_008406 4
IGFALS insulin-like growth factor binding protein, acid labile subunit NM_004970 NM_008340 4
HP haptoglobin NM_005143 NM_017370 4
GGCX gamma-glutamyl carboxylase NM_000821 NM_019802 4
CYP27A1 cytochrome P450, family 27, subfamily A, polypeptide 1 NM_000784 NM_024264 4
C4BPA complement component 4 binding protein, alpha NM_000715 NM_007576 4
ASL argininosuccinate lyase NM_000048 NM_133768 4
AHSG alpha-2-HS-glycoprotein NM_001622 NM_013465 4
ACOX2 acyl-Coenzyme A oxidase 2, branched chain NM_003500 NM_053115 4
AADAC arylacetamide deacetylase (esterase) NM_001086 NM_023383 4

Table 5. Transcripts with multiple votes for liver-specificity in both human and mouse. The “Votes” column
gives the total number of votes for liver-specificity in both human and mouse.

Symbol Name Human RefSeq Mouse RefSeq Votes
CD3D CD3D antigen, delta polypeptide (TiT3 complex) NM_000732 NM_013487 4

Table 6. Transcripts with multiple votes for CD4 T cells-specificity in both human and mouse. The “Votes”
column gives the total number of votes for CD4 T cells-specificity in both human and mouse.
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Symbol Name Human RefSeq Mouse RefSeq Votes
MYL7 myosin, light polypeptide 7, regulatory NM_021223 NM_022879 6
CSRP3 cysteine and glycine-rich protein 3 (cardiac LIM protein) NM_003476 NM_013808 6
CASQ2 calsequestrin 2 (cardiac muscle) NM_001232 NM_009814 6
TNNT2 troponin T type 2 (cardiac) NM_000364 NM_011619 5
NKX2-5 NK2 transcription factor related, locus 5 (Drosophila) NM_004387 NM_008700 5
MYBPC3 myosin binding protein C, cardiac NM_000256 NM_008653 5
ACTC actin, alpha, cardiac muscle NM_005159 NM_009608 5
S100A1 S100 calcium binding protein A1 NM_006271 NM_011309 4
RYR2 ryanodine receptor 2 (cardiac) NM_001035 NM_023868 4
MYOZ2 myozenin 2 NM_016599 NM_021503 4
MFN2 mitofusin 2 NM_014874 NM_133201 4

Table 7. Transcripts with multiple votes for heart-specificity in both human and mouse. The “Votes” column
gives the total number of votes for heart-specificity in both human and mouse.

Symbol Name Human RefSeq Mouse RefSeq Votes
SLC34A1 solute carrier family 34 (sodium phosphate), member 1 NM_003052 NM_011392 6
UMOD uromodulin (uromucoid, Tamm-Horsfall glycoprotein) NM_003361 NM_009470 5
PTHR1 parathyroid hormone receptor 1 NM_000316 NM_011199 5
NAT8 N-acetyltransferase 8 (camello like) NM_003960 NM_023455 5
FMO1 flavin containing monooxygenase 1 NM_002021 NM_010231 5
DAO D-amino-acid oxidase NM_001917 NM_010018 5
CDH16 cadherin 16, KSP-cadherin NM_004062 NM_007663 5
SLC6A13 solute carrier family 6 (neurotransmitter transporter, GABA), member 13 NM_016615 NM_144512 4
SLC27A2 solute carrier family 27 (fatty acid transporter),member 2 NM_003645 NM_011978 4
SLC17A1 solute carrier family 17 (sodium phosphate), member 1 NM_005074 NM_009198 4
PCK1 phosphoenolpyruvate carboxykinase 1 (soluble) NM_002591 NM_011044 4
FXYD2 FXYD domain containing ion transport regulator 2 NM_021603 NM_052824 4
FOLR1 folate receptor 1 (adult) NM_016731 NM_008034 4
ASS argininosuccinate synthetase NM_054012 NM_007494 4
ALDRL6 myo-inositol oxygenase NM_017584 NM_019977 4

Table 8. Transcripts with multiple votes for kidney-specificity in both human and mouse. The “Votes”
column gives the total number of votes for kidney-specificity in both human and mouse.

Symbol Name Human RefSeq Mouse RefSeq Votes
ELA3A elastase 3A, pancreatic NM_005747 NM_026419 7
ELA2A elastase 2A NM_033440 NM_007919 7
PRSS3 protease, serine, 3 (mesotrypsin) NM_002771 NM_009430 6
PNLIPRP2 pancreatic lipase-related protein 2 NM_005396 NM_011128 6
ELA3B elastase 3B, pancreatic NM_007352 NM_026419 6
CTRL chymotrypsin-like NM_001907 NM_023182 6
PNLIPRP1 pancreatic lipase-related protein 1 NM_006229 NM_018874 5
PNLIP pancreatic lipase NM_000936 NM_026925 5
KLK1 kallikrein 1, renal/pancreas/salivary NM_002257 NM_010639 5
CTRB1 chymotrypsinogen B1 NM_001906 NM_025583 5
CEL carboxyl ester lipase (bile salt-stimulated lipase) NM_001807 NM_009885 5
REG1B regenerating islet-derived 1 beta (pancreatic stoneprotein, pancreatic thread protein) NM_006507 NM_009042 4
REG1A regenerating islet-derived 1 alpha (pancreatic stone protein, pancreatic thread protein) NM_002909 NM_009043 4
RBPSUHL recombining binding protein suppressor of hairless (Drosophila)-like NM_014276 NM_009036 4
INS insulin NM_000207 NM_008387 4
GP2 glycoprotein 2 (zymogen granule membrane) NM_001502 NM_025989 4
CLPS colipase, pancreatic NM_001832 NM_025469 4

Table 9. Transcripts with multiple votes for pancreas-specificity in both human and mouse. The “Votes”
column gives the total number of votes for pancreas-specificity in both human and mouse.
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Symbol Name Human RefSeq Mouse RefSeq Votes
ODF1 outer dense fiber of sperm tails 1 NM_024410 NM_008757 6
TNP1 transition protein 1 (during histone to protamine replacement) NM_003284 NM_009407 5
SPINLW1 serine peptidase inhibitor-like, with Kunitz and WAP domains 1 (eppin) NM_020398 NM_029325 5
PHF7 PHD finger protein 7 NM_173341 NM_027949 5
MCSP sperm mitochondria-associated cysteine-rich protein NM_030663 NM_008574 5
DPEP3 dipeptidase 3 NM_022357 NM_027960 5
ACTL7A actin-like 7A NM_006687 NM_009611 5
ZPBP zona pellucida binding protein NM_007009 NM_015785 4
PRM1 protamine 1 NM_002761 NM_013637 4
LDHC lactate dehydrogenase C NM_017448 NM_013580 4
GAPDS glyceraldehyde-3-phosphate dehydrogenase, spermatogenic NM_014364 NM_008085 4
CRISP2 cysteine-rich secretory protein 2 NM_003296 NM_009420 4
ACTL7B actin-like 7B NM_006686 NM_025271 4

Table 10. Transcripts with multiple votes for testis-specificity in both human and mouse. The “Votes”
column gives the total number of votes for testis-specificity in both human and mouse.

Human Mouse
Promoters in CSHLmpd 51506 46475
RefSeq transcripts with a promoter in CSHLmpd 16433 15061
RefSeq transcripts with known TSS (EPD, DBTSS and GenBank) 7212 4742

Table 11. Summary of promoter data.

The main resource for mapping transcripts to promoters is the CSHL mammalian promoter database
(CSHLmpd) (Xuan et al., 2005), which includes human, mouse and rat. CSHLmpd includes experimentally
confirmed promoters that are annotated in EPD (Perier et al.,1998), DBTSS (Suzuki et al., 2002) and
GenBank, as well as computationally predicted promoters. All but 27 transcripts with an experimentally
verified transcription start site (TSS) correspond to RefSeqs (see Table 11 for CSHLmpd statistics). may be
associated with the same TSS.

Repetitive regions in promoters. Human and mouse proximal promoters contain a high proportion of
LINEs (Human), SINEs and simple repeats. Repeats were not masked for most of our analysis. If tissue-
specific promoters have no special relation with any particular kind of repeat, the repeats will have no
effect on our analysis because we measured enrichment of motifs and modules relative to background sets
composed of real promoters, and not simplified statisticalmodels. Repeat regions make a considerable
portion of the nucleotide content of our foreground-set promoters. Using RepeatMasker (Bedell et al.,
2000) to mask primate and rodent repeats in the human and mouse tissue-specific promoters indicates that
12% to 26% of the nucleotides are within repeat regions. The breakdown per tissue is given in Table 12.

CpG-related promoters. Vertebrate promoter sequences are enriched with CpG islands and these are
often used to help identify promoters. CpG islands tend to occur with higher frequency in promoters of
housekeeping genes than tissue-specific genes (Gardiner-Garden and Frommer, 1987). Because CpG island
frequency is related to tissue-specific transcription, wecalculated CpG frequency and GC-content in our
promoter sets. The Gardiner-Garden method (Gardiner-Garden and Frommer, 1987) requires CpG islands
to have GC-content at least 0.50, length greater than 200bp,and number of CpG dinucleotides at least 0.6
times the number expected based on the GC-content. The Takaimethod (Takai and Jones, 2002) refines the
Gardiner-Garden method with attention to detection of human CpG islands. We say that a promoter is CpG
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Tissue Human Mouse
CD4 T-cells 20.22% 16.55%
Heart 15.96% 10.71%
Kidney 17.21% 15.47%
Liver 22.77% 16.09%
Pancreas 22.23% 18.24%
Skeletal muscle 11.73% 12.61%
Testis 25.76% 17.40%

Table 12. Proportions of RepeatMasker-masked nucleotidesfrom total promoter length.

Tissue Human Mouse
CD4 T-cells 0.68 0.29
Testis 0.73 0.42
Heart 0.42 0.36
Skeletal muscle 0.35 0.46
Liver 0.32 0.21
Kidney 0.19 0.29
Pancreas 0.19 0.16
Ubiq 0.91 0.83

Table 13. Proportion of CpG related promoters in our tissue specific sets and in a set corresponding to
ubiquitous transcripts (house keeping).

related if a CpG island is detected less than 2000 bases upstream or 500 bases downstream from the TSS.
To compare the proportion of CpG related promoters in our tissue-specific sets to the proportion of of CpG
related promoters of house keeping genes we selected transcripts with EST evidence in multiple tissues.
In both mouse and human we ranked transcripts to minimize theproportion of EST evidence in any given
tissue, and selected the top 1000. Table 13 gives a comparison between CpG related promoters in these sets
and CpG related promoters in tissue specific sets.

1.7 Tissue-expressed transcription factors

We attempted to identify transcription factors that are expressed in a given tissue using the same data used
to identify tissue specific sets. This data includes GNF SymAtlas, the Hughes Toronto array, and EST data
from dbEST. We were interested in expression evidence and were not concerned with tissue-specificity,
however attempts to identify expression of a single transcript are fundamentally different than attempts to
construct transcript sets. The former require each transcript to have strong evidence, while the later are
robust to outliers and are evaluated as a set. For this reasonwe elected not use the GO annotation for
calling tissue-specificity of single transcripts. Due to data and analysis constraints, we did not require
multiple confirmations for factor expression and simply described the evidence for each factor in TCat. The
highest confidence data had multiple votes, few absent callsfrom the microarray expression data, and high
proportion in the given tissue according to dbEST.

8



2 Motifs and redundancy elimination

Previously characterized motifs were taken from the vertebrate subset of the matrix table of TRANSFAC
version 9.1 (Matys et al., 2003). We usedUNIQMOTIFS (Smith et al., 2005c) to eliminate redundancies in
the presentation. A motif was considered redundant if it wassimilar to a higher ranked motif, and similarity
was measured using the Kullback-Leibler divergence between position frequency matrices (Smith et al.,
2005b). We associated redundant motifs with the highest ranking similar non-redundant motif.

2.1 Significance of ranks for known motifs

The identities of known tissue-specific regulators along with a characterization of their binding sites, can be
used to verify our ranking method. Skeletal muscle and liverare well studied (Odom et al., 2004; Krivan and
Wasserman, 2001; Wasserman and Fickett, 1998; Johnson et al., 2005), and the transcription factors known
to have large functional roles in these tissues are well characterized. In liver, the most important factors
are known to be HNF-1, HNF-3, HNF-4, C/EBP, VDR and CDP (Schrem et al., 2002, 2004). In skeletal
muscle, the most important factors are known to be MEF-2, SRF, PAX, and members of the Myogenin
family (Duprey and Lesens, 1994). We used the Wilcoxon signed ranks test to determine if the ranks of the
matrices associated with these factors received significantly high ranks when the entire set of 554 vertebrate
matrices from TRANSFAC (release 9.1) were ranked accordingto importance.

There were a total of 37 matrices for liver, the sum of their ranks was 2574, and the associatedp-value
was1.38 × 10

−15. There was also a total of 37 matrices for skeletal muscle, with a rank sum of 5115.5 and
an associatedp-value of6.07 × 10

−8.

2.2 Models and significance of motifs and modules.

We used position-weight matrices to model transcription factor binding sites, and top-scoring sites in each
promoter to measure motif enrichment, but these are not always appropriate. For example, the POU3 family
of factors bind to a pair of sites that can be separated by up tothree nucleotides (Li et al., 1993). Such
motifs cannot be accurately described using position-weight matrices, and we expect that large classes of
factors will be identified with binding specificity that ispoorly characterized by position-weight matrices.
Recent results show that true binding sites for certain factors are often accompanied by nearby lower-affinity
sites (Zhang et al., 2006), and for such factors this information should be considered when evaluating motif
enrichment.

Modeling the organization of regulatory modules is a formidable challenge. Some experimental ev-
idence suggest that conserved relative spacing and orientation between module sites is important, while
other evidence suggest the opposite; it is likely that no single organization model can adequately describe
all modules (Erives and Levine, 2004). We did not use conservation of order, spacing or orientation to re-
verse engineer modules, but believe that in many cases co-linear order is conserved on the module level. Our
method for identifying modules required that each component (i.e. motif) in the module contribute signifi-
cantly to the quality of the module, which provides statistical evidence for functional interaction between all
motifs in the module. We found that the pairing of myogenin family members with SRF or MEF-2 produces
significant modules, but pairing of MEF-2 and SRF is not significantly enriched in skeletal-muscle specific
promoters. This finding suggests that MEF-2 and SRF regulatetranscription in skeletal muscle indepen-
dently. We note that computational identification of modulecomponent sites is especially challenging and
depends on interactions between the components. In presentwork, when several possible sites of variable
affinity were predicted, we chose to annotate only the top-scoring sites.
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Program Width Bits Gran. Refine N

DME 12 1.55 0.5 0.25 25
10 1.6 D 0.125 50
8 1.8 D 0.125 50

DME-B 10 1.6 0.5 0.25 25
8 1.8 D 0.125 50

Table 14. Parameters used for runs ofDME andDME-B to discover motifsde novothat are enriched in the
tissue-specific promoter sets relative to the background sets. TheBits value refers to bits per column, the
Gran. value refers to the granularity, theRefinevalue describes the parameter of the refinement procedure,
and theN value is the number of motifs requested. More information onthese parameters can be found
in (Smith et al., 2005b)

Binding specificity for some transcription factors may be poorly characterized. Examples include char-
acterizations based on too few sites, andin vitro verification in cell-lines where a factor has a different
conformation or affinity for a particular site. An example ofa factor with possibly incomplete characteriza-
tion of binding specificity is HNF-6. Our data did not includeevidence for its expression in liver but HNF-6
is a known liver regulator (Samadani and Costa, 1996), whoseTRANSFAC motif was not found to be en-
riched in our liver promoter sets. The HNF-6 binding motif was derived from a small set of sites identified
in a restricted context (Samadani and Costa, 1996; Lannoy etal., 1998), and other evidence suggests that
HNF-6 has two modes of binding to DNA (Lannoy et al., 1998).

2.3 Motifs identified de novo

Motifs discoveredde novowere obtained using theDME (Smith et al., 2005b) andDME-B (Smith et al.,
2006) algorithms. We used the parameter sets in Table 14. Redundant motifs were combined with the non-
redundant one to which they were associated, and the combination was optimized greedily with respect to the
balanced error rate. The program used to combine the motifs and optimize with respect to motif importance
is available from the authors. When ade novoidentified motifM was similar to an experimentally verified
motif M ′, we annotatedM with the factor that is known to bind sequences matchingM ′. Similarity was
measured using Kullback-Leibler divergence (Kullback andLeibler, 1951), usingMATCOMPARE (Schones
et al., 2005) (available inCREAD), and motifsM andM ′ of lengthm ≤ m′ were called similar if the motifs
could be aligned in at leastm − 1 positions without gaps with K-L divergence below1.0.

2.4 Motif rank and order correlation between human and mouse

To measure correlation between the tissue-specific regulatory apparatus in human and mouse, we compared
single motif ranks. This comparison method is largely independent of sequence similarity and ortholog
information, and is used to compare over- and under-representation of motifs in our foreground sets. Motif
ranking summarizes known information in each foreground set, and is therefore ideal for measuring regu-
latory correlation. We used the Spearman rank correlation test (Altman, 1991) to compare vertebrate motif
ranks in human and mouse. We found significant correlation inall but CD4 T-cells (Table 15).

To test whether the correlation can be detected using standard sequence alignment methods, we iden-
tified the highest likelihood sites for the vertebrate motifset in each proximal promoter and its ortholog,
and compared the order of the sites in the pair using a Wilcoxon signed-ranks test. When the top score
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Tissue CD4 T-cells Pancreas Testis Kidney Skeletal muscle Liver Heart
p-val 0.0618 1.49E-07 5.63E-12 3.87E-12 3.19E-19 5.10E-29 6.46E-57

Table 15. Correlation between vertebrate motif ranks in human and mouse tissues.

was shared by multiple sites we chose the site that best matched the ortholog order. We noticed that
promoters with significant co-linear site conservation also had high sequence similarity. We measured
similarity as the proportion of nucleotides matched by a clustal w alignment. Our data included 1, 17,
6, 12, 15, 40, and 11 ortholog promoters for pancreas, testis, kidney, skeletal muscle, liver, and heart,
respectively. Sequence similarity over the 102 promoter pairs was0.51 ± 0.079, which is significantly
higher than random promoter pairs (0.411 ± 0.022), and 9 pairs were found to have significant co-linear
site conservation. In testis, the proximal promoter for PHDfinger protein 7 (PHF7) (NM_027949 and
NM_016483) had significant co-linear conservation; the similarity between the promoters was 0.65. In kid-
ney, solute carrier family 27 (SLC27A2) (NM_003645 and NM_011978) with 0.49 similarity. In skeletal
muscle, troponin C type 2 (TNNC2) (NM_003279 and NM_009394)with 0.61 similarity, and myogenic
factor 6 (MYF6) (NM_002469 and NM_008657) with 0.76 similarity. In liver, argininosuccinate syn-
thetase (ASS) (NM_000050 and NM_007494) with 0.56 similarity, and lecithin-cholesterol acyltransferase
(LCAT) (NM_008490 and NM_000229) with 0.70 similarity. In heart, mitofusin 2 (MFN2) (NM_133201
and NM_014874) with 0.42 similarity, ryanodine receptor 2 (RYR2) (NM_001035 and NM_023868) with
0.47 similarity, and actin alpha cardiac muscle (ACTC) (NM_009608 and NM_005159) with 0.68 similar-
ity. The result suggests that only a small proportion of the highest-likelihood ortholog sites can be recovered
using traditional multiple sequence alignment.
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