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Multipoint Linkage Analysis Using Sib Pairs: An Interval Mapping
Approach for Dichotomous Outcomes

Jane M. Olson
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Summary

I propose an interval mapping approach suitable for a
dichotomous outcome, with emphasis on samples of af-
fected sib pairs. The method computes a lod score for each
of a set of locations in the interval between two flanking
markers and takes as its estimate of trait-locus location
the maximum lod score in the interval, provided it exceeds
the prespecified critical value. Use of the method depends
on prior knowledge of the genetic model for the disease
only through available estimates of recurrence risk to rela-
tives of affected individuals. The method gives an unbiased
estimate of location, provided the recurrence risks are cor-
rectly specified and provided the marker identity-by-de-
scent probabilities are jointly, rather than individually, esti-
mated. I also discuss use of the method for traits deter-
mined by two loci and give an approximation that has
good power for a wide range of two-locus models.

Introduction

Tests of genetic linkage that utilize affected sib pairs provide
an alternative to pedigree analysis when the genetic model
underlying the disease is not known. Early methods that
rely on sib-pair identity by descent (IBD) at the marker
locus (Day and Simons 1976; de Vries et al. 1976; Green
and Woodrow 1977; Suarez et al. 1978; Suarez and Hodge
1979) recently have been generalized to the substitution of
marker identity by state for IBD relations (Lange 1986;
Weeks and Lange 1988) and inclusion of all affected rela-
tives in a pedigree (Weeks and Lange 1988) and multiple
marker loci (Weeks and Lange 1992).

In this paper, I propose an interval mapping approach
to linkage analysis of sib-pair data when the trait variable
is dichotomous. Interval mapping has been previously pro-
posed for mapping loci underlying quantitative traits in
laboratory animals that have been subjected to breeding
experiments (Lander and Botstein 1989; Haley and Knott
1992) and in humans (Fulker and Cardon 1994). Such
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methods increase the power of detecting linkage by utilizing
information from two flanking markers rather than a single
marker. For dichotomous traits, multipoint linkage meth-
ods are also more powerful than two-point methods (e.g.,
Lathrop et al. 1985).

Although the proposed method can include affected, un-
affected, and discordant pairs, we emphasize its use for
samples of affected sib pairs. A lod score is computed for
each of a set of locations in the interval flanked by two
markers. The maximum lod score in the interval, provided
it exceeds the appropriate threshold, is taken as the estimate
of the trait-locus location. Our approach takes advantage
of multipoint IBD results obtained by Olson (in press).
Although our approach is parametric, it depends on prior
knowledge of the trait genetic model only through available
estimates of the prevalence of the trait in the population
and risks to relatives of affected probands.
The method may be extended to incorporate two trait

loci. Some additional assumptions about the trait model
are required, but we show that the method appears robust
to violation of these assumptions and is preferable to the
method that assumes a single trait locus when two loci are,
in fact, present.

Methods and Results

Genetic Model
Trait Locus.-Consider a disease with a single underlying

locus. For a disease locus with frequency p of the disease
allele T, the prevalence Kp of the disease in the population
is

Kp = P261 + 2p(1 - P)2 + (1 -p)2 3

where 61, &2, and 63 are the probabilities of expressing the
disease in individuals with trait genotypes TT, Tt, and tt,
respectively. The additive (VA) and dominance (VD) genetic
variances for the trait locus are given by

VA = 2p(1 - p)[p(&2 61) + (1 - p)(63 -2)1

and

VD = p2(1 - P)2(81 - 262 + 63)2X
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Figure I Configuration of loci in interval mapping

The population parameters Kp, VA, and VD completely
specify the distribution of sib-pair IBD scores underlying
the disease locus, conditional on the number of affected
siblings (Suarez et al. 1978).

Marker Loi.-Let Ml and M2 be linked marker loci with
known recombination fraction Om, and let the data avail-
able on these markers for the sample of sib pairs be denoted
Im. Let t, and Xt2 denote the proportion of genes shared
IBD by the members of a sib pair at Ml and M2, respec-
tively. Now consider a locus S that lies between Ml and
M2, so that the recombination fraction between Ml and S
is 01 and that between S and M2 is 02. Let d4 be the map
distance between Ml and M2, and let d denote the map
distance between Ml and S, so that d lies between 0 and d4,
inclusive. Figure 1 illustrates this configuration. A mapping
function that describes the relationship between map dis-
tance and recombination fraction may be chosen at the
user's discretion; in this paper, I use Haldane's (1919) map-
ping function in all computations.
Now, consider the quantity fi, = P (it, = i/2, t2

= j/2 Im), the estimated probability that a pair of siblings
share i genes IBD at MN and j genes IBD at M2, given the
available marker information Im and the recombination
fraction Om. Also let f. = fif and f., = jIfi, the estimated
marginal IBD probabilities. (Computation of fi, is discussed
in a later section.) Olson (in press) showed that, under the
assumptions of no crossover interference and equal male
and female recombination fractions,

E(ltdlIm) = po + put1 + P27A2 (1)

where ft, = fl./2 + f2. and -2 = f. 1/2 + f 2are the estimated
proportions of genes shared IBD by the sibs at the marker
loci, po, pi, and P2 are parameters that depend on the
recombination fractions (table 1), and ld is the proportion
of genes shared IBD for the locus at location d. Note that
Rt1 and t2 are estimated jointly by using all available marker
information. Fulker and Cardon (1994) employ a similar
expression (substituting individual estimates of RI and nt2
for and t2) in an interval mapping extension of the
Haseman and Elston (1972) method.
Now let ijt2 equal 1/4f1i + 1/2f12 + '/2f21 + [22. Olson

(in press) further showed that

Expressions for the regression parameters in equations (1)
and (2) are reproduced in table 1 from Olson (in press).
Expressions (1) and (2) contain the marker information
necessary to consider linkage to a trait locus.

Likelihood of the Marker Data Conditional on Number of
Affected Sibs in a Sib Pair
The distribution of the IBD state of a single marker

conditional on the number of affected sibs in a sib pair
was given by Suarez et al. (1978), and we extend that
approach here. Using Bayes's rule,

P(ImIA) = P(AjIm)P(Im)/P(A)

where A is the number of affected sibs in a sib pair. For a
pair of markers flanking a trait locus at location d, assum-
ing that the trait and marker loci have no pleiotropic effects
on one another,

P(ImIA) = p( m) Y P (A[id)P(tdl Im).
P(A) ir4 (3)

As lCd takes only three possible values, P (AI id) can be
written as a linear function of ltd and I (ld = '/2), the
indicator that the sibs share exactly one gene IBD:

P (A lI d) = a + Pid + YI(ld = /2),

where a, P, and y depend on KP, VA, and VD and on
the value of A. Table 2 gives expressions for a, P, and
y and for P(A) when 0, 1, or 2 sibs are affected. Substi-
tuting this linear function into equation (3) and comput-
ing the summation, we obtain

P(Im IA) = p(Im) [a + PE(ld Im)
P (A)

+ YP(iTd = '/21I~m)I.

A similar expression for the likelihood in the case of
known marker IBD states was given by Todorov (1992).

Expression (4) can be computed by using equations
(1) and (2) for a set of known locations in the interval
defined by the two markers. The likelihood ratio
Pd (Im IA)lPo(Im IA), where Po(Im IA) = P (Im) is the prob-
ability of the marker data if the trait locus is unlinked
to either marker locus, may also be computed. For a set
of N independent sib pairs, the lod score assuming that
d is the true location of the trait locus is therefore

(4)
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Table I

Regression Parameters in the Expressions for E(x2 I'm) and P (x2 = '/21 In) in the Flanking Marker
Case'

Parameter Expression

Po ........... .(1 - 11)(1 2)/1V
P*---.................... -2(1 - 2)(1 - 2W1)/Ijm(l -W.)
P2 ..................... 11f(l - x4i)(1 - 24t2)/r(1 - AV.)
°00 ..................... ..............21(1(l - V1)V2(1 -,W2)/IV
()1 ..................... ..............2(1 - 2V1,)(1 - 2Wf2)Nj1(l - 4i11)N2(1 - 12)/m(l -m)

°02.(1 -v-vv*****vvv* (l 21411)21l(l -1112)2/A12 (1 - '1 )2

(03.(1- 2W2)2A12(l - 1Vf)2/V2 (1 - li )2

(1)4 ..................... (1 - 21)2(1 2N12)2141(j1 - 11)V12(j1 - X12)/Ir(1 -_1m)2(1 - 2Vmi+2W')

SOuRCE.-Olson (in press).
a , = Oi + (1 -_ )2; i = 1, 2, m.

N

Zd = X, log1o[a + PfE(|dlImi) + YP(7td = /21Imi)]
i=l

N

- I logloP(Ai).
i=l

The last term on the right-hand side does not depend
on the location of the trait locus and may be ignored
when comparing log-likelihoods across the interval.

If K,,, VA, and VD are known, Zd may be computed
easily. If these quantities cannot be specified a priori
with confidence, as is often the case in practice, it is
necessary to estimate them. However, when the data set

consists solely of affected sib pairs, all three parameters
cannot be estimated using only the likelihood (4). One
solution is to estimate a, ,, and y by using previously
obtained recurrence-risk information, and I discuss this
approach in a later section. First, however, we consider
the problem of computing the fij and the expected lod
score.

Estimation ofMarker IBD Probabilities for Sib Pairs with No
Parental Information

For the expected lod score computations presented in
subsequent sections, we consider only the case of indepen-
dent sib pairs for which no parental marker information
is available.

Let X be the two-marker IBD state of the sib pair. Using
Bayes's theorem,

iii = P(nr I'm) P (ImI tA)P (R) (5)

Expressions for P(r) for each X are given in Olson (in
press). Conditional on the marker joint IBD state, the mark-
ers are independent; that is,

P(Im t) = P(Iml l)P(Im2 t2) i

where Iml and Im2 represent the data for M1 andM2, respec-

tively. To obtain this result, we rely on the facts that parents
and offspring always share exactly one gene IBD and that
noninbred parents share exactly zero genes IBD so that we
need not include a summation over possible IBD states for
parental and parent-offspring pairs. These facts also imply
that the algorithm is valid when parental marker data are

available. These individual marker terms may be obtained
using quantities given in table 3 of Haseman and Elston
(1972) by noting that, for example,

P Ml 1o) = P(9 i IIMOP(iMl)

Table 2

Coefficients of Regression of P(Alwd) on wd and i(xd = '/2)

REGRESSION COEFFICIENTS
No. OF AFFECrED

SBLINGS (A) a yy P(A)

2 ..+........... KV VD -VD/2 K2 +VA/2 + VD/4
1 ...... ...... 2Kp(1 - Kp) -2(VA + VD) VD 2Kp(1 - Kp) - VA - VD/2
0 ..... ...... (1 - Kp)2 VA + VD -VD/2 (1 - KP)2 +VA/2 + VD/4

790



Olson: Multipoint Linkage Using Sib Pairs

Table 3

Maximum E(Zd) and Estimated Distance from Ml (d) for 25 Affected Sib Pairs, w Estimated Jointly and Individually
(Additive Trait,4= .001)

LOCATION OF TRAIT Locus

No. OF Center One-fifth from Ml
MARKER

DISTANCE BETWEEN ALLELES Joint RR Individual Rf Joint Rf Individual ft
MARKERS

(cM) Ml M2 maxE(Zd) d max E(Zd) d max E(Zd) d max E(Zd) d

02 2 1.09 2.5a .83 2.5a 1.11 1.0a .84 2.0
5 6 6 2.27 2.5a 2.02 2.5a 2.35 1.0a 2.07 1.8

26 1.85 2.5a 1.69 4.2 1.73 1.0a 1.52 3.8
6 2 2.06 1.0a, 1.92 .4

02 2 .86 5.0a .72 5.0a .91 2.Oa .75 3.2
10 .6 6 1.87 5.0a 1.75 5.0a 2.01 2.0a 1.88 2.8....226 1.48 5.Oa 1.38 7.4 1.34 2.0' 1.19 6.0

6 2 1.82 2.0' 1.74 1.0

02 2 .57 10.0a .52 10.0a .67 4.0a .61 5.0
20 6 6 1.31 10.0a 1.28 10.0a 1.59 4.0a 1.54 4.2....226 .99 10.0a .96 12.6 .89 4.0a .81 8.2

6 2 1.46 4.0' 1.43 3.2

r2 2 .31 17.5a .30 17.5a .46 7.0' .44 7.7
35 .6 6 .75 17.5' .74 17.5a 1.13 7.0a 1.12 7.0a

*-- -2 6 .55 17.5' .54 19.2 .54 7.0a .52 9.8
16 2 1.09 7.0' 1.08 6.3

a True trait-locus location.

The computation of the fii is therefore straightforward and
requires little computer time.
The algorithm immediately extends to include informa-

tion from multiple markers. Letting E more generally de-
note the multipoint IBD state of the sib pair, we may com-
pute P(I) for multiple markers using the Markov property
for sib-pair IBD states (e.g., Olson, in press), giving

P (t) = P (11)P (X2 |1)P (L3 X2) ... P(OK nK-1)
for K markers. Similarly, P (Im,tI) is a product of K contri-
butions, one from each marker. Again, the algorithm is
valid when parental marker information is included; the
computational burden remains trivial.

For larger pedigree structures, including nuclear families
with more than two offspring, computation of joint-marker
IBD estimates is expected to be time consuming, particu-
larly if one wishes to extend the methodology to include
information from other relative pairs from a large pedigree
and additional markers. For that reason, we will examine,
in the sib-pair setting, the feasibility of substituting esti-
mates of n, and it2 obtained from each of the markers
separately, that is, using table 3 of Haseman and Elston
(1972).
Expected Lod Score

Consider a set of N independent sib pairs. Assume that
data on two codominant markers are available for each

sib pair but that no parental marker data are available.
The expected value of the lod score Zd is equal to

E(Zd) = N Y P(glA)Zd(g),
g

where g is in the set of possible sib-pair marker genotypes
and Zd(g) is the lod score obtained for that genotype. Using
Bayes's rule, we obtain

P(gIA) = P(A Ig)P(g)
P(A)

The quantities P(A Ig) and P(A) can be computed as in the
previous section. The quantity P(g) is the prior probability
of the sib-pair genotype and is given in Olson (1994) for
the case of sib pairs with no parental marker information.

Three expected lod score functions for 140 affected sib
pairs are shown in figure 2. In each plot, the distance be-
tween the two markers was 20 cM, the population preva-
lence Kp was .001, and the trait locus was additive (81 = 1,
62 = '/2, 8 = 0). Each marker has two equally frequent
alleles. In each plot, four curves are shown: E(Zd) as
discussed above, with nt and X2 estimated jointly; E(Zd),
with n, and it2 estimated individually; E(Zd), using only
information from M1; and E(Zd), using only information
from M2. The latter two curves were computed by put-
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Figure 2 Expected lod score (E[Zd]) curves for 140 affected sib pairs: two markers, joint estimation ( ); two markers, individual estimation
(---------), marker 1 only (---- -); marker 2 only (-- -). For all figures, each marker has two equally frequent alleles; the trait model is
additive, and the Kp = .001. a, Trait locus in center of interval (10 cM). b, Trait locus near marker 1 (4 cM). c, No linked trait.

ting E(ddllmk) = (1 -V) - (1 - 2xV)E(kI Imnk), k = 1, 2,
where Imk refers to the information from the k th marker
locus. (Because the trait locus was additive, P (Rd
= 1/2 Imk) is not needed here.)

Figure 2a shows a situation in which the trait locus lies
halfway between the two markers. The curve computed
by using the joint marker information (solid line) has the
highest maximum E(Zd); E(Zd) computed by using two
markers, individual estimates, also does well. Figure 2b
shows a situation in which the trait locus lies 4 cM from
M1. Again, the curve computed by using the joint marker
information has the highest maximum E(Zd). Figure 2c
shows the case of no linked trait locus; here, joint marker
information gives the most evidence against linkage.

These curves suggest that the information from two
flanking markers has more power than a single marker;
this finding parallels that of Fulker and Cardon (1994) and
Olson (in press) for quantitative trait loci. Of interest is
the comparison between jointly estimated and individually
estimated R, and it is instructive to take a closer look at
figure 2b. In addition to increasing power, the use of jointly
estimated it is unbiased; that is, the maximum value of
E(Zd) is at the correct location of 4 cM when R's are jointly
estimated but at -6 cM when individually estimated.
The expected bias generated by the individually esti-

mated X is further illustrated in table 3, which gives the
maximum E(Zd) and the location of E(Zd) for various
marker distances, trait locations, and numbers of marker
alleles for 25 affected sib pairs. In all cases, the trait locus
is additive, and the population prevalence Kp equals .001.
When the trait locus is in the center of the interval and
markers are equally informative, both methods give the
correct location. In all other cases, however, the maximum
E(Zd) occurs at the correct location only when the nts
are jointly estimated, with one exception occurring when

marker informativity and distance between the markers
are high.
To obtain information useful in study planning, we

also computed E(Zd) at the true location for 25 sib pairs
with either 0, 1, or 2 affected members, at various values
of Kp and marker distance, and for dominant (61 = 1,
62 = 1, 83 = 0), additive (61 = 1, 62 = 1/2, 63 = 0), and
recessive (61 = 1, 62 = 0, 63 = 0) trait loci. All markers
have two equally frequent alleles, and the trait locus is in
the center of the interval; the results obtained therefore
reflect close to the smallest E(Zd) in a genome mapping
setting. The results are given in table 4. As expected,
linkage information increases with decreasing marker
distance and decreasing trait prevalence. Rare recessive
diseases provide the most information.
As the likelihood function (4) is also valid for pairs

with 0 or 1 affected members, we also included the
contribution of these pairs to the expected lod score.
With the exception of a common trait (Kp = .5), pairs
with no affected members contribute virtually no linkage
information. Pairs with one affected member contribute
substantial information if the trait is dominant or a com-
mon recessive and a moderate amount of information
if the trait is an uncommon or rare recessive. These
results suggests that, if the trait locus is uncommon,
the most powerful design samples only pairs with two
affected, unless the trait locus is strongly dominant. On
the other hand, if pairs with one affected member are
available, adding them to the analysis will increase
power. These findings are consistent with previous work
(Blackwelder and Elston 1985).

Obtaining Values for Kp, VA, and VD
The likelihood (4) and its associated lod score may be

computed directly if Kp, VA, and VD are known. Con-
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Table 4

(E(Zd)) at True Trait-Locus Location for 25 Sib Pairs with 0, 1, or 2 Affected for Recessive, Additive, and Dominant Traits

TRArr MODEL

Recessive Additive Dominant
DISTANCE
BETWEEN Two One No Two One No Two One No
MAIUKERS Affected Affected Affected Affected Affected Affected Affected Affected Affected

Kp (CM) Sibs Sib Sibs Sibs Sib Sibs Sibs Sib Sibs

r 5 .12 .92 .12 .04 .11 .04 .12 .92 .12
) 10 .10 .73 .10 .03 .09 .03 .10 .73 .10
1 20 .07 .48 .07 .02 .06 .02 .07 .48 .07
35 .03 .26 .03 .01 .03 .01 .03 .26 .03

r 5 1.29 .80 .00 .49 .11 .00 .72 .99 .00
)1 10 1.03 .63 .00 .40 .09 .00 .58 .79 .00

.1.1..... 20 .67 .40 .00 .26 .06 .00 .39 .53 .00
35 .36 .21 .00 .15 .03 .00 .21 .29 .00

F 5 3.79 .74 .00 1.00 .11 .00 1.05 1.00 .00
01

............

10 2.96 .57 .00 .80 .09 .00 .84 .81 .00.0.1... . ..... .201.88 .35 .00 .53 .06 .00 .55 .53 .00
35 . ....98 .18 .00 .29 .03 .00 .30 .30 .00

F 5 5.48 .72 .00 1.09 .11 .00 1.09 1.00 .00
001

...........

10 4.22 .56 .00 .86 .09 .00 .87 .81 .00.001..... . .1202.63 .34 .00 .57 .06 .00 .57 .53 .00
35 . ..1.35 .17 .00 .31 .03 .00 .31 .30 .00

5 6.23 .72 .00 1.10 .11 .00 1.10 1.00 .00
0001 10 4.76 .55 .00 .87 .09 .00 .87 .81 .00.0001....1 20 2.94 .33 .00 .57 .06 .00 .57 .53 .00

35 . ..1.49 .17 .00 .32 .03 .00 .32 .30 .00

NoTE.-Two markers with two equally frequent alleles; trait located in the center of the interval, X estimated jointly.

versely, estimation of these parameters is not possible if
only affected individuals are sampled. Fortunately, for
many traits, sufficient population information is available
to give accurate estimates of these parameters. The parame-
ter Kp is the prevalence of the trait in the population, and
VA and VD may be obtained from information on incidence
in siblings (K,) and in parents/offspring (K0) of affected
probands (Suarez et al. 1976), sometimes referred to as
recurrence risks. Specifically,

KO = 'K+VA
2Kp,

and

2VA + VD
4K,,

so that

and

VD = 4[(K, - Kp)Kp- VA/2].

If no dominance is present, then K0 = K,, and

VA = 2(K, - Kp)Kp,.

This formulation is particularly appropriate if unaffected
and/or discordant pairs are present, as the values for Kp,
VA, and VD may be used in the likelihood contributions
from these pairs.

If only affected pairs are present, it is instructive to exam-
ine an alternative formulation. First, note that the expres-
sions in table 2 are valid for relative pairs other than sib-
pairs; the differing distributions of R~d for the different types
of relative pairs give the probabilities

P(AS = 2) = KpKs = a + f/2 + y/2,

P(AO = 2) = KpKo = a + P/2 + y,VA= 2(K. Kp)Kp,
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Table 5

E(Zd) at True Trait-Locus Location for 25 Sib Pairs
with Two Affected as a Function of Kp, K,, and K0

DISTANCE BETWEEN MARKERS
(CM)

Kp KK, K. 5 10 20 35

.1 .2 .2 .25 .20 .14 .08
.3 .3 .45 .36 .25 .14
.4 .4 .58 .47 .31 .17
.5 .5 .66 .54 .36 .20
.3 .2 1.26 1.00 .65 .34
.4 .3 1.19 .95 .62 .34
.25 .2 .75 .60 .39 .21

.01 .05 .05 .66 .54 .36 .20
.1 .1 .86 .69 .46 .25
.2 .2 .97 .78 .52 .28
.3 .3 1.01 .81 .53 .29
.4 .4 1.03 .82 .54 .30
.5 .5 1.05 .83 .55 .30
.1 .05 2.59 2.05 1.32 .70
.15 .05 3.62 2.83 1.80 .94
.25 .08 3.83 2.99 1.90 .99

.001 .005 .005 .66 .54 .36 .20
.01 .01 .86 .69 .46 .25
.1 .1 1.07 .85 .56 .31
.3 .3 1.09 .87 .57 .31
.5 .5 1.09 .87 .57 .31
.01 .005 2.59 2.05 1.32 .70
.015 .005 3.62 2.83 1.80 .94

NoTE.-Two markers with two equally frequent alleles; trait located
in the center of the interval; it estimated jointly.

and

P (Ag = 2) = KpKg=a + 0/4 + y/2,

where Kg is the incidence in grandparents (or other second-
degree relatives) of affected probands, and As, Ao, and Ag
denote the number of affected individuals in the relative
pair (s = sibling, o = parental, g = grandparental). Solving
for a, ,3, and y, we obtain

a = Kp(2Kg - Ko),

P = 4Kp(K, - Kg),

and

y = 2Kp(Ko- K,)

Be careful to note that these values of a, P, and y are valid
only for the case of two affected relatives. Note that because
Kp is a factor in all three parameters, it cancels in the
likelihood and is not needed for lod score computation.

This formulation is particularly useful when extended to
the two-locus case, which I consider in the next section.
To summarize this subsection, given estimates of Kp, Ks,

and K0, the lod score and an estimate of trait-locus location
may be obtained; in particular, prior knowledge of the trait
allele frequencies and penetrances are not required. For
samples of affected sib pairs, table 5 gives expected lod
scores E(Zd) at the true trait-locus location for values of
Kp, K,, and K0c. The range of recurrence risks represented
roughly covers the region consistent with the given Kp and
a one-locus model (Suarez et al. 1976).

Extension to Two Trait Loci
Thus far, we have considered only the situation in which

the genetic determinant of the trait is a single locus. For
many traits, the possible presence of more than one trait
locus complicates the analysis. Risch (1990a) gives formu-
las for the risk to relatives of affected probands for two-
locus multiplicative, additive, and genetic heterogeneity
models. These expressions may be used to adapt the present
method to handle two trait loci.
To illustrate this, consider the genetic heterogeneity

model. Risch (1990a) shows that the recurrence risk K, to
a relative of type r, is a function of the marginal disease
prevalences Kp, and Kp2 and the marginal recurrence risks
Kr1 and Kr2 corresponding to trait loci 1 and 2, respectively.
Specifically,

KpKr = 1 -2(1 -K 1)(1 -Kp2)
+ (1 - 2Kp1 + Kp,1Kr7)(1 - 2Kp2 + Kp2Kr2),

where Kp is again the prevalence of trait in the population.
Note that KpKr is also the probability that both relatives
in the pair are affected.

For a pair of affected sibs, assume data Im are available
on two linked markers and that one of the trait loci, say
locus 1, lies between these two markers, and the other is
not linked to either locus 1 or the markers. As before,

P(Im IA) = P(Im) I P(AI7Ei)P(7rItIIm)P(A) xi

where sj is the IBD state at trait locus 1. Here, P (A), the
probability of an affected sib pair, is equal to KpK,, where
K, is the recurrence risk for siblings. To compute P(A st1),
the probability of an affected pair given the IBD state at
locus 1 only, let wij be the penetrance of an individual with
genotype gi at locus 1 and gi at locus 2. In a manner similar
to Risch (1990a), we write

P (A ltX1) = IWiX wkIP(ggk Il)P (gigl).
i k l

In this summation, the subscripts i and j belong to the first
individual, and k and I belong to the second; i and k belong
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Table 6

Expressions for the Coefficients for Two-Locus Models for Affected Sib Pairs

Two-Locus Modela a* 1I*f*

Multiplicative .......... aKp2K,2 13Kp2K,2 YKp2K,2
Additive ................. a + Kp2K,2 + 2KplKp2 P 1
Heterogeneity .......... 1 - 2(1 - Kpl)(1 - Kp2) + (1 - Kp,)(1 - 2Kp2 + Kp2K,2) P(1 - 2Kp2 + Kp2K,2) y(l - 2Kp2 + Kp2K,2)

+ a(l - 2Kp2 + Kp2K,2)

a From Risch (1990a).

to locus 1, and j and I belong to locus 2. For the genetic
heterogeneity model, the penetrance wi, is defined as 1 - (1
- xi)(1 - yj), where xi and yj are the marginal penetrances
for the two trait loci. Substituting into the previous expres-
sion and simplifying, we get

P(AInt) = 1 - 2(1 - Kpl)(1 - Kp2)
+ (1 - 2Kpl)(1 - 2Kp2 + Kp2Ks2)

+ (1 - 2Kp2 + Kp2K.2)P (Al iil) .

The expression P(A 1 X1) is the conditional probability that
the sib pair is affected because of locus 1 only; it equals a
+ O3n, + yI(7r1 = 1/2) as in the one-locus case. As a result,
P (A IIm) is also a linear function of E(r1c IIm) and P(2t
= 1/21 Im) and may be written

case. This is easily done in the case of the multiplicative
model. First note that

P (AInc) = [a + On 1 + yI (nl = 1/2)IKp2Kr2X

for any type of relative pair r. As a result, it suffices to
assume that Ks2/Kg2 and KS2/Kp2 are known and equal
cg and co, respectively.
Then, following a program similar to that in the one-

locus case, we can write

KpK, = cx* + 3*/2 + y*/2,X

coKPKO = a* + P*/2 + y* 1,

and

CgKpKg = a* + p*/4 + y*/2 .

P(AIIm) = a* + P*E(illIm) + y*P (XE, = 1/2Im);

expressions for these coefficients are given in table 6.
Results are similar for the additive and multiplicative
models of Risch (1990a); expressions for a*, P*, and
y* for these models are also given in table 6.

If the genetic model is known, then the coefficients
are easily computed. If the genetic model is not known,
the coefficients may not be computed without making
some assumptions about the model. With some knowl-
edge or assumptions about locus 2, the population recur-
rence-risk information may be used to gain estimates of
the coefficients in the same manner as in the one locus

Solving for the coefficients, we get

a* = Kp(2cgKg - c.K.) ,

* = 4Kp(K, - CKg) ,

and

y* = 2Kp(coKo Ks)

In the absence of any knowledge of locus 2, we suggest
putting co = v/Ks/Ko and c* = 1Kg/Kg; these choices put
Ks2lKg2 = KsllKgl and Ks2/Ko2 =KslIKol

Table 7

Some One-Locus Models

No. Type p 81,2 83 Kp K, K. Kg

1 ... Additive .01 1 1/2 0 .01 .2575 .2575 .1338
2 ... Dominant .005 1 1 0 .01 .5043 .5038 .2569
3 ... Recessive .1 1 0 0 .01 .3025 .1000 .0550
4 ... Additive .1 1 1/2 0 .1 .3250 .3250 .2125
5 ... Dominant .0513 1 1 0 .1 .5439 .5380 .3190
6 ... Recessive .3162 1 0 0 .1 .4331 .3162 .2081
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Table 8

Some Two-Locus Models

No. Locus 1 (No.') Locus 2 (No.') Type Kp K, K. Kg

1 ..... Additive (4) Additive (4) Multiplicative .01 .1056 .1056 .0452
2 ..... Dominant (5) Dominant (5) Multiplicative .01 .2958 .2894 .1018
3 ..... Recessive (6) Recessive (6) Multiplicative .01 .1876 .1000 .0433
4 ..... Dominant (5) Recessive (6) Multiplicative .01 .2356 .1701 .0664
S ..... Additive (1) Additive (1) Heterogeneity .0199 .2665 .2665 .1382
6 ..... Dominant (2) Dominant (2) Heterogeneity .0199 .5038 .5038 .2665
7 ..... Recessive (3) Recessive (3) Heterogeneity .0199 .3060 .1086 .0642
8 ..... Dominant (2) Recessive (3) Heterogeneity .0199 .4048 .3058 .1652
9 ..... Dominant (5) Recessive (3) Heterogeneity .109 .5311 .5099 .3094
10 ..... Dominant (2) Recessive (6) Heterogeneity .109 .4468 .3411 .2248

a From Table 7.

Unfortunately, the additive and heterogeneity models
can not be so easily approximated; however, in practice, it
may suffice to use the multiplicative model approximation
for two-locus diseases. We examined the effect of using
this approximation for several two-locus models. Table 7
gives parameter values for several one-locus models that
were combined under either a multiplicative or genetic het-
erogeneity model to give the two-locus models in table 8.
Table 9 gives the maximum E(Zd) and location estimates
obtained when the true model, one-locus approximation,
and the multiplicative two-locus approximation are used
on a sample of 25 independent sib pairs. The parameters

Table 9

Maximum E(Zd) and Estimated Distance in cM from Ml (d)
and their Approximations

a*, 1*, and y* for the true model were obtained from the
parameters of their component loci. The parameters a,
13*, and y* for the two approximations used the true K,,
Ko, and Kg in the manner described above for the one-

locus case and for the two-locus case. Each marker had
two equally frequent alleles, and the markers were 20 cM
apart; the trait locus was 4 cM from M1.
The one-locus approximation does rather poorly in all

cases, except when the contribution of one of the loci is
much greater than that of the other (models 9 and 10). For
the multiplicative models, parameter values obtained using
the one-locus approximation generate negative likelihood

for Two-Locus Models

APPROXIMATION

GIVEN MARKER TRUE MODEL One-Locus Two-Locus
Two-Locus IBD STATE AT
MODEL Locus max E(Zd) d max E(Zd) d max E(Zd) d

1 ................. 1 .30 4.Oa ...b ... .30 4.0a
2 ....... 1 .44 4.0 ... ... .44 4.0a
3 ................. 1 .79 4.0 ... ... .79 4.0a
4 ................. 1 .44 4 0 ... ... .43 5.5
4 ....... 2 .79 4.0 ... ... .78 2.4

................. 1 .13 4.0 -.04 8.4 .13 5.8
6 .................1 .14 4.0 .00 8.2 .14 5.2
7 . ...... 1 .50 4.0O -.04 8.4 .44 6.4
8................. 1 .23 4.00 -.03 8.2 .21 6.1
8 ................. 2 .28 4.0 .03 8.4 .275.0
9................. 1 .37 4.0O .37 5.0 .33.0
9 . ...... 2 .00 4 0O -.35 9.8 -.09 9.4
10 ..... 1 .00 4.00 -.54 9.8 -.15 9.4
10 2 .60 4.0" .60 4.8 .53 .0

NoTE.-Twenty-five affected sib pairs; markers are 20 cM apart, with two equally frequent alleles; trait locus
is at d = 4 cM.

a True trait-locus location.
b... = Not a valid model.
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contributions and are invalid. The two-locus approxima-
tion does well, however, even when the true model is one of
heterogeneity. Some power is lost, and the location estimate
may be inaccurate, but the method is nonetheless capable
of giving an approximate location for the trait loci. In no
case does the two-locus approximation result in an maxi-
mum E(Zd) that is <88% of that resulting from the true
model, except for the rare loci in models 9 and 10. These
results suggest that the two-locus approximation may be
an effective screening tool when scanning the genome for
linked markers. In addition, the recent work of Neuman
and Rice (1992) gives values of recurrence risks compatible
with several two-locus epistatic and heterogeneity models;
this information will aid researchers in choosing between
one- and two-locus models. An alternative approach might
be to search simultaneously for two disease loci. Such an
approach may increase the power of a linkage study
(Schork et al. 1993; Knapp et al. 1994) and may be feasible
for a genome scan in the affected sib-pair setting (Knapp
et al. 1994).

Discussion

We describe an interval mapping approach to scanning
the genome for markers linked to one or two loci underly-
ing a dichotomous trait or disease. The method is paramet-
ric in the sense that it depends on prior knowledge of
recurrence risks to relatives of affected individuals. On the
other hand, prior knowledge of the trait allele frequencies
and penetrances are not required, and thus the method
retains some of the model-free properties of affected sib-
pair methods. The method gives an unbiased estimate of
trait-locus location, provided the recurrence risks are cor-
rectly specified and provided the marker IBD states are
estimated jointly, rather than individually, as proposed by
Fulker and Cardon (1994) for quantitative data. In addi-
tion, the jointly estimated marker IBD states are easy to
compute, even for multiple markers, for sib pairs with or
without parental marker information, provided the sib
pairs are independent. Although I did not specifically exam-
ine the case in which parental marker information is avail-
able, power is likely to improve if additional family mem-
bers are typed (e.g., Risch 1990b).
The method has good power for detecting linkage for

rare diseases, particularly those displaying a strong domi-
nance component. Some guidelines useful for study plan-
ning are given in the form of lod scores expected for traits
consistent with a variety of one-locus models. A more de-
tailed examination of power, particularly for two-locus
trait models, and comparison to other mapping methods,
such as full maximum likelihood and nonparametric meth-
ods, are needed to provide suitable guidelines for mapping
complex diseases. Appropriate critical values also need to
be chosen. A critical lod score value of 3.3 has been sug-
gested for human data by Lander and Schork (1994), on
the basis of work by Lander and Botstein (1989) in which

the Ornstein-Uhlenbeck diffusion process is used to ap-
proximate the null distribution of linkage statistics. Further
work is also needed to determine the most useful applica-
tions of the methods. It is anticipated that these methods
will be most useful in a coarse, rather than fine, mapping
context; in fine mapping, the lod score curve may be too
flat to provide a sufficiently narrow confidence interval
around location estimate. As a result, it is important that
the coarse mapping methods provide as accurate a location
estimate as possible.

I have emphasized the use of the method with samples
of affected sib pairs, although the likelihood is also given
for unaffected and discordant sib pairs for the one-locus
case. Affected-unaffected pairs contribute substantial infor-
mation about linkage primarily if the trait is strongly domi-
nant. Inclusion of all available sib pairs is practical in the
one-locus case, as estimates of Kp, VA, and VD may be
used to construct the likelihoods of all types of sib pairs;
in the two-locus case, recurrence-rate information is not
sufficient to obtain estimates of all of the regression param-
eters required. In addition, if discordant pairs are included,
the Haseman-Elston method may be applied directly and
parameters estimated in a standard regression framework.
This latter approach has the advantage of not requiring
any prior trait knowledge; however, the estimates obtained
in an interval mapping setting are likely to be biased (Fulker
and Cardon 1994; Olson 1994b).

It is also possible, in the case of affected sibpairs, to
estimate f and y, given prior knowledge of a, by using
standard likelihood methods. In the one-locus case, a is
simply Kp, the square of the trait prevalence in the popula-
tion and in many cases may be well specified. It is instruc-
tive, then, to examine the likelihood for an additive trait
locus (y = 0). When the trait is rare or uncommon, a is
substantially smaller than ,3, and the likelihood as a func-
tion of f is very flat; it is very difficult to estimate [3 with
good precision, without very large sample sizes. When the
trait is common, the likelihood as a function of J has a
much sharper maximum; in this case, simulations (not
shown) suggest that both P and the maximum lod score
are well estimated if the sample size is sufficiently large but
greatly overinflated if the sample size is small.

Risch (1990b) gives a form of the likelihood in the single-
marker case P(Im IA) = Xt P(ltIA)P(ImlI) and proposes
estimation of the parameters P ( IA), ir = 0, 1/2, 1, by using
standard maximum-likelihood techniques. An extension
of this method to the interval mapping framework may
give an alternative form of the likelihood (4) that yields
more stable parameter estimates. Further examination
of parameter estimation using these likelihoods is
needed.
The methods outlined in this paper rely on prior

knowledge of trait recurrence-risk information. If such
information is not available, a nonparametric approach
may be taken instead when data consist solely of affected
sib pairs. The quantity E(nd Im) may be used to con-
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struct a modified Green and Woodrow (1977) statistic
Td = (d - 1/2)/ Var (itd), where ltd is the mean of ld for
the sample of sib pairs. The statistic Td may then be
computed at values of d throughout the interval defined
by the two markers. Unfortunately, Td, although provid-
ing evidence for linkage, gives biased location estimates
(not shown). The nonparametric approach does have
the advantage of not depending on any prior knowledge
of the trait model and may be suitable for a preliminary
genome scan; detailed investigation of this alternative is
left for future research. A related issue of great impor-
tance is the robustness of the methods to misspecifica-
tion of recurrence risks and marker allele frequencies.
With regard to the former, the results in table 9 and
other preliminary work suggest that, while estimates
may be biased, good power remains; much more work
is needed to fully explore the robustness of the methods.
The method is easily extended to other types of rela-

tive pairs. If such pairs are independent, their contribu-
tions may be included by adding their terms to the log-
likelihood. I leave the treatment of correlated relative
pairs from an extended pedigree to future research. One
of the problems with use of a multipoint method in
large pedigrees is the computational burden involved in
estimating the marker variables; this burden increases
rapidly when more than two markers are considered.
One challenge, therefore, is to develop efficient strategies
for multipoint IBD computation for arbitrary pedigree
structures. One final note is given regarding computa-
tion. Programs to implement the methods outlined in
this paper and analogous methods for quantitative traits
(Olson, in press) are in development and will be made
available by the author at a future date.
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