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Summary

In the past several years, allelic association has helped
map a number of rare genetic diseases in the human
genome. A commonly used upper bound on the recombi-
nation fraction between the disease gene and an associ-
ated marker is known to be biased downward, so there
is the possibility that an investigator could be misled.
This upper bound is based on a moment equation that
can be derived within the context of a Poisson branching
process, so its performance can be compared with a
recently proposed likelihood bound. We show that the
confidence level of the moment upper bound is much
lower than expected, while the confidence level of the
likelihood bound is in line with expectation. The effects
of mutation at either the marker or disease locus on the
upper bounds are also investigated. Results indicate that
mutation is not an important force for typical mutation
rates, unless the recombination fraction between the
marker and disease locus is very small or the disease
allele is very rare in the general population. Finally, the
impact of sample size on the likelihood bound is investi-
gated. The results are illustrated with data on 10 simple
genetic diseases in the Finnish population.

Introduction

Linkage analysis is a powerful method for localizing
disease genes to a small region of the genome. To date,
upward of 400 genes in the human genome have been
mapped using this approach, and 40 have been suc-
cessfully cloned (Lander and Schork 1994). The method
uses family data, so typically the limited number of
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available families are not informative for markers close
to the disease gene, say within a centimorgan. Therefore,
linkage analysis is not particularly useful for fine map-
ping a gene.

Allelic association mapping (also known as linkage
disequilibrium mapping), which relies on population
data, is one approach that may help to further localize
genes responsible for simple diseases that are relatively
rare in the population. These diseases, such as cystic
fibrosis (CF), Huntington disease, and diastrophic dys-
plasia (DTD), are due to a mutation in one gene whose
inheritance pattern follows the laws of Mendelian genet-
ics. In contrast, for the more common complex diseases
such as diabetes, the disease does not cosegregate with
a single locus. The underlying idea of allelic association
mapping is that disease chromosomes that descend from
the same ancestral mutation should share a common
haplotype in a neighborhood of the disease locus, re-
flecting the haplotype on the ancestral chromosome on
which the mutation occurred. Markers near the disease
gene are therefore more likely to have an allele in higher
frequency in the disease population than in the general
population. Hence markers that have an allele in high
frequency in a sample of disease chromosomes but in
lower frequency in a sample of normal chromosomes
are good candidates for being near the disease gene. It
was noted by Hastbacka et al. (1992) that the best
chance of success with allelic association mapping is
when most of the disease chromosomes in the popula-
tion descend from a single ancestral mutation and the
mutation is old enough to allow recombination to break
up the ancestral haplotype, but not so old that the main-
tained neighborhood around the disease locus is too
small to be easily detected. These conditions often hold
for isolated founder populations that are not very old.
A well-studied example is Finland (Nevanlinna et al.
1972; de la Chapelle 1993).

Standard contingency table analyses can be used to
compare the marker allele frequency distributions in
normal and disease samples. These analyses identify
markers that may be close to the disease gene, but do
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not provide any estimate of how close. Such estimates
are necessary when one is trying to clone the gene. Re-
cently, Hastbacka et al. (1992) proposed an estimate
of the recombination fraction between a marker and a
disease locus that was derived from a simple formula
for the expected proportion of the disease chromosomes
in the population that carry the ancestral marker allele.
They recognized that the distribution of the proportion
is skewed (that is, the median is greater than the mean)
because of early recombination events, and to compen-
sate for the skewness they used Luria-Delbruck-type
arguments to modify the estimate and to obtain what
they believed to be approximate bounds.

In a subsequent paper, Kaplan et al. (1995) argued
that, if allelic association is detected for a rare human
disease, then the disease population is not very old, and
they proposed that its growth could be modeled with
a Poisson branching process. Adopting a Monte Carlo
approach, they simulated disease populations to account
for evolutionary variability and estimated confidence
bounds from the likelihood of the recombination frac-
tion. Since the moment equation used by Hastbacka et
al. can be derived within the context of the model used
by Kaplan et al., the confidence levels of the moment
bound and the likelihood bound can both be investi-
gated using simulation methods. In particular, Kaplan
et al. gave some results indicating that the moment
bound tends to underestimate the recombination frac-
tion, suggesting that the Luria-Delbruck approximation
does not adequately account for the skewness of the
distribution.

Lehesjoki et al. (1993) modified the moment estimate
of the recombination fraction to allow for mutation at
the disease locus. They were concerned about this issue
because, for the genetic disease they were studying, pro-
gressive myoclonus epilepsy of the Unverricht-Lundborg
type (EPM1), the frequency of the inferred ancestral
marker allele in the normal sample was not small. Since
their estimate is also based on a moment formula, it too
may be biased downward. They presented only the point
estimate and alluded to the Luria-Delbruck approxima-
tions for confidence bounds. To investigate the effect
of recurrent mutation at the disease locus by using the
likelihood method, the Poisson branching model needs
to be modified. Such a modification is not difficult if
it is assumed that the Finnish population is growing
exponentially.
To investigate the impact of mutation at the marker

locus as well as at the disease locus, requires some addi-
tional modifications to the Poisson branching process.
Since most of the markers now used are microsatellite
markers, with fairly high mutation rates (Weissenbach
et al. 1992), it is possible that mutation at the marker
might also bias the results. Fortunately, the error is con-

servative, since ignoring mutation when it is present
leads to bounds that are larger than necessary (Lehesjoki
et al. 1993). Even so, it is of interest to quantify the
bias. Correctly modifying the branching process can be
a problem for a microsatellite marker because it requires
modeling the process of changes from one marker allele
to another, and theories about this process are still spec-
ulative. To get around this issue, alleles are collapsed
into two categories, ancestral and nonancestral, and it
is assumed that mutations from the nonancestral allele
to the ancestral allele are so infrequent that they can be
ignored. Hence, only mutation away from the ancestral
allele is assumed to be relevant.
Sample size considerations can also be investigated

with a simulation approach. For most studies the num-
ber of disease chromosomes is small, rarely >100, and
sometimes as small as 30 (Kestila et al. 1994). In design-
ing an experiment it would be of value to know how
much additional information one could obtain with
larger samples. The same is true with the normal sample,
especially since the allele frequencies in the normal sam-
ple are treated as constant by both Hastbacka et al.
(1992) and Kaplan et al. (1995). In some cases the nor-
mal sample is as small as 32 (Kestila et al. 1994), so
ignoring sampling error could lead to a bias.
The purpose of this paper is to use the simulation-

based likelihood approach proposed by Kaplan et al.
(1995) to compare the behavior of the moment bound
and the likelihood bound of the recombination fraction,
both in the presence and absence of mutation at either
the disease or marker locus. The benefits of increasing
either the disease or normal sample size are also investi-
gated. To simplify the presentation and minimize the
number of simulation parameters, we focus on models
suitable for the Finnish population. Also, rather than
simulating data, we will demonstrate the behavior of
the upper bounds for 10 recently published data sets for
simple genetic diseases in Finland.

Methods

To make the paper self-contained, we briefly review
the likelihood method proposed by Kaplan et al.
(1995). We assume that the disease is relatively rare
and is caused by a mutation in a single gene. Suppose
a mutation at the disease locus was introduced into
the population G generations ago on a chromosome
carrying allele M1 at the marker locus M, and that most
if not all the disease chromosomes are descendants of
this mutation. In the founder population it is assumed
that only one individual carried the mutation. In prac-
tice, M1 is identified as the high-frequency allele in the
disease sample. All the other possible alleles are col-
lapsed into one category denoted by M2. The frequen-
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cies of marker allele i in the normal and disease samples
are denoted by fi, and Aid respectively, and their popula-
tion frequencies by pin, and Pid, i = 1,2. The values of Pin
are assumed to be constant since the disease mutation is
assumed to be of recent origin. Since we will be simulat-
ing values of fid, we denote the observed values of fld
and fl" by fid and fin

No Mutation
All of the diseases we consider are recessive, although

the analysis could also apply to late-onset dominant dis-
ease such as Huntington disease. Since the disease is in
low frequency in the general population, it is reasonable
to assume that individuals are either heterozygous at the
disease locus (carrier) or homozygous for the normal
allele (noncarrier). In Kaplan et al. (1995) it is argued
that the disease population cannot be very old, so that
modeling the initial growth of the disease population is
critical. If all carriers are selectively equivalent, then for
a broad class of population genetic models (Ewens
1979), the initial growth of the disease population can
be modeled as a Poisson branching process. More spe-
cifically, for i = 1,2, let

Xi(t) = number of disease chromosomes carrying
allele M, in the tth generation after the
introduction of the mutation into
the population .

Thus X1(O) = 1, X2(0) = 0, and XT(t) = X1(t) + X2(t)
is the number of disease chromosomes in generation t.
XT(G) is the number of disease chromosomes currently
in the population. The key assumption is that condi-
tional on {X1(t),X2(t)), X1(t + 1) and X2(t + 1) have
independent Poisson distributions with means m1 (X1 (t),
X2(t)) and m2(Xt(t), X2(t)). The functions m1 and m2
reflect the assumptions made about recombination and
mutation at the two loci. If mutation is ignored at both
loci, then for i = 1,2

mi [X1l(t) X2 (t) (1

= (1 + X)[(1 - C)Xi(t) + CXT(t)Pin] X

where c is the recombination fraction between the
marker and disease loci and X is a small positive quantity
reflecting the growth rate of the entire population as
well as the possible selective advantage of carriers over
noncarriers. Since the disease mutation has entered the
population, it is assumed that X > O.

It is not difficult to show that conditional on XT(t),
X1 (t) has a binomial distribution with parameters XT(t)
and

ml[X1(t- 1),X2(t- 1)]
m1[X1(t- 1),X2 (t- 1)] + m2 [X1 (t- 1),X2 (t- 1)

It follows that

EX(t) | X (1 - cOX(t - 1) +XT~~ J - XT(t - 1)

Taking expectations and iterating leads to the equation

E[X (G)l (1 c)G + [1 (1 )]pln (2)[XT(G)J-c)pi
If we estimate the expectation on the left with fld and
Pln with fin, then a moment estimate of C is

(3)

This estimate of c is essentially the same one used by
Hastbacka et al. (1992) since fn was negligible for DTD.
Following Lehesjoki et al. (1993), we write

A Ad Afn
Pexcess= fn1 -

The statistic Pexcess was introduced by Bengtsson and
Thomson (1981) and recently used by Risch et al.
(1995).
The difficulty with using equation (3) to estimate c

is that the expectation in equation (2) takes into ac-
count the variation resulting from the evolutionary
forces responsible for determining the distribution of
Pld. To estimate this expectation properly we would
need observations from replicate populations, which
is not possible. In essence, we are estimating the mean
of a random variable with a single observation, and
this will work as long as the variance is not large.
Since we assume that X1(0) = 1, the distribution of
Pld is skewed and the variance is not small. Because
of the skewness, a random value of Pld will tend to
be larger than its mean, and we would expect equation
(3) to lead to underestimates of c. In an attempt to
account for the skewness of the distribution of Pld,
Hastbacka et al. (1992) proposed the following bound
for c, which is based on Luria-Delbruck arguments.
The upper moment bound on c, CH, is the solution of
the equation

Pexes =CH InCHXT(nG) 2CH
Pexcess =XI

where XT(G) is the current number of disease chromo-
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somes in the population. A lower moment bound can
be defined analogously, but we are not concerned with
its behavior in the present article.

Effects of Mutation
The amount of mutation at the disease locus each

generation depends upon the mutation rate as well as
the size of the normal population, and to allow for muta-
tion at the disease locus, assumptions need to be made
about the growth of the normal population. For isolated
founder populations, exponential growth seems like a
reasonable assumption, but other models of growth such
as a logistic model could easily be implemented. Usually
there is an estimate of the current size of the population,
for example, for Finland the population is about N
= 5,000,000 or 2N = 10,000,000 chromosomes (Hast-
backa et al. 1992; de la Chapelle 1993). It follows that
the expected number of new mutants at the disease locus
in the kth generation after the initial settlement of the
population is approximately JUD2N( 1 + X )-(G - k), where
RD is the mutation rate at the disease locus and Xe is the
growth rate of the normal population. For simplicity we
assume that X, = X. The mi now become

mJ[X1(t), X2(t)]

= (1 + X){(1 - C)Xi(t)
+ [cXT(t) + ID2N(1 + X) (G t)]pin }

satellite is not well characterized. To simplify the analy-
sis we assume that mutations at the marker locus that
change a nonancestral allele to the ancestral one are
sufficiently rare that they can be ignored. This allows
us to collapse the marker alleles into two categories,
ancestral and other, and consider only mutation away
from the ancestral allele. With this assumption, the most
general forms for the mi become

ml [X1 (t), X2 (t)

= (1 + X){(1 - C - jiM)Xl(t)

+ [CXT(t) + gD2N(1 + X)(iG)]p} X

and (6)

m2 [X1 (t), X2 (t)]

= (1 + ){(1 - c)X2(t)
+ [cXT(t) + RD2N(1 + AGt) ]p2n + JMXl(t)},

where JM is the mutation rate at the marker.
The generalization of equation (5) is straightforward.

Indeed,

(4) E _Xi(G)_
-XT(G)_

The same argument used to justify equation (2) can be
used to show that

( 1 )

+ 1 - (1 - C- -D m)G] (7)

(5)
[X (G)R (( ))

[ ( q )
l

]

where q is the frequency of the disease allele in the
overall population. To derive equation (5) it is assumed
that

XT(t)(1 + X)G-t
2N

is constant in time and equals q. Equation (5) is essen-
tially the same result in Lehesjoki et al. (1993). The
right-hand side in equation (3) is now an estimate of c
+ 4D/q, which shows in particular that ignoring muta-
tion at the disease locus is conservative.
Most markers now typed are microsatellite markers.

The large number of alleles is advantageous for linkage
studies, but is of less value for studying allelic associa-
tion since the underlying mutation process for the micro-

Pi1 C + -)

( q )

C D+ gm)
Equation (7) does not lead to a simple moment estimate
of any linear combination of the parameters unless c
+ Dl/q > JIM. However, it is not hard to show that if
we ignore gM, then we overestimate c + 9D/q, which is
what we would expect.

Equations (2), (5), and (7) can lead to underestimates
of c, since the distribution of Pld is skewed, and so it is
possible that inferences about the parameters may be
misleading. The simulation approach does not have
these problems, so it is of interest to examine the effects
of mutation at the marker and disease loci with this
approach to see whether the results support the conclu-
sions about the mutation processes from equation (7).
The basic idea of Kaplan et al. (1995) is to estimate

the distribution of Pld from simulations and use it to
make inferences about c for a given data set. The details
of the simulation are given in Kaplan et al. (1995). Con-
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ditional on PMd, the number of disease chromosomes in
a sample of size kd carrying the M1 allele has a binomial
distribution with parameters kd and Pld. Hence, to cal-
culate the likelihood of C, the distribution of Pld is esti-
mated and the binomial probabilities are averaged with
respect to this distribution. To remove numerical prob-
lems the likelihood is scaled by the binomial probability
calculated assuming Pld = fid. Having estimated the like-
lihood, standard likelihood methods involve dropping
down 2 from the maximum of the ln(likelihood) to give
a support interval for c corresponding to a 95% confi-
dence interval. The upper bound on c determined in this
way is denoted by CM. One can also determine a lower
likelihood bound for c. We will not consider its behavior
except to say that for many of the markers it is zero and
is therefore not very informative.
To carry out simulations, values need to be assigned

to the model parameters G and X. This issue is discussed
in detail by Kaplan et. al. (1995), and a method is pro-

posed that exploits prior knowledge about XT(G), the
current size of the disease population. One advantage
of restricting our attention to Finland, is that estimates
of G and XT (G) are available from the literature. Indeed,
for Finland it is estimated that G = 100 generations and
XT(G) = 107 (Hastbacka et al. 1992; de la Chapelle
1993). Assuming exponential growth, one finds that X
is .1 (Hastbacka et al. 1992; Kaplan et al. 1995).
A benefit of using a simulation approach is that the

distribution of Pld can be estimated conditional on speci-
fied behavior of the underlying disease population. For
example, Kaplan et al. (1995) required that the size of
the simulated disease population approximate its esti-
mated value. If no condition is placed on the allele fre-
quencies in the normal and disease samples, then for a

small fraction of the simulated samples the ancestral
allele frequency in the disease sample would be less than
its frequency in the normal sample ( fd < fin). These
simulations do not affect the likelihood calculations very

much, since the associated binomial probability is very

small. However, for these samples Pexcess is negative, and
consequently we cannot calculate the moment bound.
To avoid this problem, we constrain the simulations in
the following additional ways. First, the marker must be
polymorphic in the disease sample since all the published
data sets have this property. Second, the frequencies of
the ancestral allele in the simulated disease population
and the disease sample must be larger than fins the
observed allele frequency in the normal sample. Since
we identify the ancestral allele because of the differences
between the frequencies in the two samples, this seems

like a reasonable requirement. Finally, we require that
the marker allele frequencies in the disease sample be
statistically different from the marker allele frequencies
in the normal sample, i.e., the X2 statistic is significant

(>3.84). We do this because we would not even be
considering the marker if the associated X2 statistic was
nonsignificant.
With these constraints, 1,000 values of Pld and fid

were simulated in order to estimate their distributions.
An approximate maximum likelihood estimate of c was
determined since the likelihood was evaluated only on
a mesh of values. In most cases the width of the mesh
was .001, but for markers very close to the disease gene
(Ad close to 1), we used .0002. In all cases the likelihood
function was unimodal so the maximum can easily be
identified.

Since we can simulate the evolutionary distribution
offd for any specified value of c, an alternative approach
for finding an upper bound on c is to consider the tail
probabilities of this distribution. More specifically, a
value of c is placed in the confidence set if the probability

P(C) = Pc(fld > fAd)

is not too small. Since P(c) decreases as c increases, we
can define the bound

Cp = SUp{C: P(c) > .025),

where the supremum is evaluated on the mesh of values
of c.
The evolutionary distribution of fid can also be used

to judge the performance of the other two bounds, CH
and CM. For the bounds to be reasonable we expect
the associated tail probabilities, P(cM) and P(CH), to be
small.

Effect of Sample Size
To examine sample size effects we adopt the following

strategy. The normal sample provides only an estimate
of Pn and we want to examine the effect that sampling
error has on the bound CM. To do this we recalculated
CM using upper and lower 95% confidence bounds on
Pln. More specifically, the lower bound on CM, CM_, was
calculated assuming that the frequency of the ancestral
allele in the normal sample equals the greater of 0 and
fin - A where

2li(1 - fln")

The upper bound, CM+ is defined analogously as the
lesser of 1 and fln + A.
We have already noted that the disease sample gives us

information about the current frequency of the ancestral
marker allele in the disease population, which is the
single realization of the evolutionary process upon
which the confidence-bound calculation is based. In-
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creasing the disease sample size improves the confidence
bound only to the extent that we decrease the binomial
sampling variation and consequently improve our esti-
mate of the frequency of the ancestral marker allele in
the disease population. Typically, the disease sample
consists of all disease chromosomes that are readily
available, and increasing the sample size is not a simple
matter. We therefore consider only the effect that dou-
bling the sample size has on CM. To do this, we assume

that the frequency of the ancestral allele in the second
sample lies in the 95% confidence interval constructed
from the first sample. In this way we can determine
a plausible range of values of CM from the combined
sample.

Results

We restrict our attention to 10 simple genetic diseases
in the Finnish population. As already noted, Finland
has many characteristics favorable to allelic association
mapping. In particular, the current population de-
scended from a small group that settled the country
-2,000 years ago (-100 generations if 1 generation is
20 years), (Hastbacka et al. 1992; de la Chapelle 1993).
For the simulations we therefore use G = 100.
The current population size is -5 million or 107 chro-

mosomes. Assuming exponential growth with an initial
population size of 1,000, Hastbacka et al. (1992) gave

X = .085, although this bound should have been .092.
Kaplan et al. (1995) used a different argument based on

the growth of the disease population, and estimated X
= .1. They argued that the likelihood analysis is not
sensitive to variation in X as long as 1 + does not
change very much. In this paper we will use X = .1.

In table 1 we list 10 simple genetic diseases, and for
each disease an estimate of the number of disease chro-
mosomes currently in the Finnish population. We as-

sume that the different numbers of disease chromosomes
are, in particular, a consequence of the variability of the
evolutionary process. Table 2 contains the relevant data
for markers showing an association with each disease.
The ancestral marker allele (M1) is assumed to be the
most frequent allele in the disease sample, and all the
other alleles are collapsed into one category (M2). In
general, we included in table 2 all markers that were

judged to be close to the disease gene using a standard
x2 statistic. The values of the x2 statistic are given in
table 2. For DTD there were 11 such markers, and we

chose 6 that spanned the region of association. For a

few of the markers the frequency of the most frequent
allele in the disease sample was lower than the frequency
of the collapsed category. This caused problems when
we calculated the likelihood, and these markers were

excluded from table 2. The values of Pexcess are also given
in table 2.

The X2 values range from 3.97 (CF/pJ3.1 1) to 210.80
(DTD/CSF1 R/EcoRI), whereas the values of Pexcess lie
between .35 (CF/pJ3.1 1) and .95 (e.g., Batten disease
[CLN3]/D16S298). In general the X2 values and the
Pexcess values are closely related, but this is not always
the case. For example, the Pexcess values for EPM1/PFKL
and EPM1/D21S25 are .70 and .71, whereas the X2 val-
ues are 14.02 and 46.60, respectively. The reason for
the big difference in X2 values is that the ancestral allele
at D21S25 is the common allele in the general popula-
tion and the ancestral allele at PFKL is the rare allele in
the normal sample. This is presumably a consequence
of the stochastic variability of the evolutionary process.
The relationship between the two statistics is also sensi-
tive to sample size. For example, markers CLN5/
D2 1 S1 62, CLN1/HY-TM1, CLN3/Dl 6S298, DTD/
CSF1 R/Styl , and DTD/CSF1 R/EcoRl all have values of
Pexcess >.9 ("CLN5" stands for late-infantile neuronal
ceroid lipofuscinosis; "CLN1" stands for infantile neu-
ronal ceroid lipofuscinosis), while the X2 values range
from 26.3 (CLN5/D21S162) to 210.8 (DTD/CSFlR/
EcoRl). The difference in these two X2 values is caused
by the sample size: 25 disease, 25 normal versus 158
disease, 128 normal.

In table 3 the three bounds, CH, CM, and cp, are given
for all the markers as well as the associated tail probabil-
ities. The values of CH are all <.01, and in some cases
are considerably smaller, e.g., for CLN1/HY-TM1, CH
= .0011, and DTD/CSF1R/Styl, CH = .0012. If we use
the usual conversion of 1 cM = 1,000 kb, then CH indi-
cates that these two markers are within 100 kb of the
disease locus. The associated tail probabilities for these
markers, .25 and .30, however, are not small. In fact,
all of the tail probabilities in table 3 for CH are large,
suggesting that the CH bound does not provide a mean-
ingful upper bound. The smallest tail probability is .18
(CLN5/D13S162), while the largest is .64 (DTD/
PDGFRB/Bgl 1). Hence, it appears that the Luria-Del-
bruck correction proposed by Hastbacka et al. (1992)
is not adequate. For two of the markers, DTD/RPS14
and CF/pJ3.11, the moment estimate of c was actually
greater than the bound, indicating that the algorithm
for calculating CH is not appropriate if Pexcess is too small
(Pexcess = .35 and .34). Also included in table 3 are the
maximum likelihood estimates of C (CML). They are close
to the corresponding values of CH, suggesting that it may
be more appropriate to think of CH as a point estimate
of c rather than as an upper bound of C.
The likelihood bound, CM, for each of the markers is

larger than the corresponding value of CH, and for many
markers, CM is about twice the value of CH. We are not
sure why this is so, but this does give a quick and reason-
able estimate of CM. The associated tail probabilities
for CM are consistently below the nominal .025 value.
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Table I

Simple Genetic Disease in the Finnish Population for Which There Are Markers
Showing Allelic Association

Estimated No. of
Disease Chromosomes

in the Finnish
Disease Population x 10'" Reference

DTD ........ ........................ 6.0 Hastbacka et al.
1994

EPM1 ........ ........................ 7.1 Lehesjoki et al. 1993
Cartilage-hair hypoplasia (CHH) ................ 6.6 Sulisalo et al. 1994
CLN3 ........ ........................ 6.9 Mitchison et al. 1995
Congenital nephrotic syndrome (CNF) ....... 11.0 Kestila et al. 1994
CLN1 ........ ........................ 7.1 Hellsten et al. 1993
APECED ........... ..................... 6.3 Aaltonen et al. 1994
CLN5 ......... ....................... 2.1 Savukoski et al. 1994
SD ....... ......................... 4.2 Hattaja et al. 1994
CF ....... ......................... 6.1 Ramsay et al. 1993

However, the values of cp indicate that the CM bounds
are not excessively conservative. In most cases cp is
within .001 of CM.
The disease genes for CF and DTD have been identi-

fied, so it is of interest to see how the bounds perform
in these cases. The DTD gene is - 70 kb from CSF1R
(Hastbacka et al. 1994), whereas for CSFlR/Styl CH
= .0012 and CM = .0026. In this case the likelihood
bound identifies a target region that is -250 kb proxi-
mal to CSF1R, while the moment bound indicates a
region about half that size. However, it is inappropriate
to use this one example to justify the use of the moment
bound.
The CF markers, pXV-2C and pKM.19, are -250 kb

and -200 kb, respectively, from the CF gene (Kerem et
al. 1989), and so the associated recombination fractions
are -.0025 and .002. The CH bounds are .0028 and
.0051, whereas the CM bounds are .009 and .014. In
both cases the bounds incorrectly imply that pKM.19
may be closer to the gene than pXV-2C. The associated
x2 values and Pexcess values also support the incorrect
order. In contrast, CF data for these markers for many
of the European countries are consistent with the correct
order of the markers (Kaplan et al. 1995). The Finnish
data are different because the frequency of the ancestral
pKM. 19 allele is lower in the disease sample and higher
in the normal sample than in the other European coun-
tries. One explanation for this difference is the small
sample size (38 disease and 37 normal). It is possible
that with larger samples, the bounds would be consistent
with the correct order. Then again, it is also possible
that the evolutionary history of the Finnish population
is different from that of the rest of Europe.
The ancestral allele frequencies for pXV-2C are con-

sistent with samples from other parts of Europe (Kaplan
et al. 1995). The large value of CM, .009, for pXV-2C
in table 3 reflects the young age of the Finnish popula-
tion since the critical parameter is the product cG. Since
Kaplan et. al. (1995) used G = 200 in their analysis,
we need to halve .009 to make the proper comparison.
When we do this we find that .0045 is in line with the
values in table 2 in Kaplan et al. Similarly, if we were
to halve CH, then we obtain .0014 which is substantially
below the actual value .0025 (Kerem et al. 1989).
To explore the effects of mutation at the marker and

disease loci, we calculated CM for different values of gM
and RD. The values of gD considered were 10-6 and 10-5
(Sulisalo et al. 1994; Mitchison et al. 1995). Two values
of gM, 10', and 10-3, were examined for microsatellite
markers (Weissenbach et al. 1992). In table 4, values of
CM are given for one marker for each of the 10 diseases.
The first nine markers are microsatellites, but the last is
an RFLP and so only mutation at the disease locus was
considered. The results are consistent with the moment-
based predictions. In particular, if the value of CM calcu-
lated assuming FM = ,UD = 0 is much larger than gM
+ 9Dt/q, then the effect of mutation on CM is negligible.
Alternatively, if CM is smaller than ,UM + iD/q, then
allowing for mutation will lead to a reduction in CM.
For example, for markers 5 and 7, the values of CM
change from .013 and .014 to .011, while for markers
4 and 6, the values of CM change from .0030 and .0024
to .0016 and .0008, respectively.

This analysis assumes that one cannot identify disease
chromosomes carrying nonancestral marker alleles that
have arisen because of mutation at either the marker or
disease locus rather than recombination. If these chro-
mosomes can be identified, then it is preferable to omit
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Table 2

Sample Data for Markers Associated with the Disease Gene

DISEASE NORMAL

DISEASE AND MARKER Ml M2 Ml M2 Pexcess %2

DTD:
DSS372 ....................
CSF1 R/Styl ..............
CSF1RfI7AGA .
CSF1R/EcoRI ...........
PDGFRB/BglI ..........
RPS14 ......................

EPM1:
D21S141 ..................
PFKL ........................
PFKL/KpnI ...............
D21S25 ....................
D21S171 ..................

CHH:
D9S1 63 ....................
D9S50 ......................

CLN3:
D16S288 ..................
D1 6S299 ..................
D1 6S298 ..................
SPN ..........................

CNF:
D1 9S224 ..................
D1 9S220 ..................

CLN1:
HY-TM1 ...................
L-MYC .....................
D1S62 ......................

APECED:
D21S49 ....................
D21S171 ..................

CLN5:
D13S160 ..................

D13S162 ..................
SD:
D6S286 ....................

CF:
pXV-2c .....................
pKM.19 ....................
pMP6d-9 ..................
pG2 ..........................
pJ3.11 .......................

93
151
144
150
94
99

54
56
65
67
50

61
7
6 (14)
8

47
51

20
20
11
9

26

109 19
69 56

33
47
52
36

11
7

2

8

21 11
22 10

76
72
69

17
18

4
6

11

11
10

23 4
23 2

38 8

35
31
32
36
21

3
7
S

2
17

16
34
46
12
36
57

11
7

33
31
11

103
93
82

116
87
63

41
47
22
21
41

41 57 .75
10 88 .50

3
13
16
16

41
41
38
28

.73

.83

.95

.71

4 28 .61
2 30 .66

2

39
39

78
35
40

.95

.84

.73

0 28 .61
2 26 .62

1 26 .85
5 20 .90

15 31 .74

18
15
13
27
12

19
22
20
10
25

.84

.69

.78

.80

.34

a For this polymorphic locus the data omit chromosomes having nonancestral marker alleles that appear
to have arisen from mutation rather than recombination. The data before omission are in parentheses.

them from the data and calculate CM ignoring mutation.
For example, Hastbacka et al. (1994) found that 8 of
the 14 nonancestral DTD chromosomes at the CFS1R/
TAGA microsatellite marker retained rare ancestral al-
leles at flanking markers. If these eight chromosomes
are omitted from the data and mutation is ignored (RD
= gM = 0), then CM = .0028. In an earlier paper Hast-
backa et al. (1992) estimated the mutation rate at

CSFlR/TAGA to be on the order of .0004. The value
of CM for the nonadjusted data with ,UM = .0004 is .004.
We next examined the effect of the size of the normal

sample on CM. In table 5 upper and lower bounds on

CM are given for the 10 markers in table 4. For ease of
presentation, the markers are arranged by increasing
values of A. As expected, larger A values give greater
effect of sampling error on CM. However, if CM is small,

.54

.94

.94 (.86)

.93

.53

.35

.66

.70

.64

.71

.57

61.68
146.31
115.16 (96.63)
210.80
37.76
9.35

32.84
46.60
11.03
14.02
26.89

46.67
48.62

42.31
43.35
51.46
18.80

18.97
26.67

136.99
30.24
24.82

24.41
19.91

36.30
26.30

23.54

17.08
13.31
16.86
6.61
3.97
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Table 3

The Three Upper Bounds, CH, CM, and cp on the Recombination Fraction between the Marker and
Disease Gene, and the Associated Tail Probabilities

Disorder and Marker CH P(CH) CMLa CM P(CM) CP

DTD:
D5S372 ....................
CSF1 R/Stylb ............
CSFlR/TAGAb c
CSF1R/TAGA ..........
CSF1R/EcoRIb.
PDGFRB/BglI.
RPS14 ......................

EPM1:
D21S141 ..................
PFKL .......................
PFKL/KpnI ..............
D21S25 ....................
D21S171 ..................

CHH:
D9S1 63 ....................
D9S50 ......................

CLN3:
D1 6S288 ..................
D1 6S299 ..................
D1 6S298c .................
SPN .........................

CNF:
D1 9S224 ..................
D19S220 ..................

CLN1:
HY-TM1b .................
L-MYC ....................
D1S62 ......................

APECED:
D21S49 ....................
D21S171 ..................

CLNS:
D13S160 ..................
D13S162 ..................

SD:
D6S286 ....................

CF:
pXV-2c ....................
pKM.19 ...................
pMP6d-9 ..................
pG2 .........................
pJ3.11 ......................

.70

.12

.13

.25

.12

.71
d

. . .

.55

.49

.57

.48

.66

.54

.30

.25

.31

.29

.64

.45

.38

.64

.49

.48

.8

.10

.12

.24

.10

.9
1.6

.6

.5

.7

.6

.9

.43 .45 .5

.76 .59 1.0

.45

.30

.11

.47

.38

.36

.19

.38

.4

.3

.10

.5

.58 .51 .6

.50 .42 .5

.11

.29

.45

.25

.37

.47

.10

.3

.5

.63 .44 .6

.61 .47 .7

.34 .25 .3

.24 .18 .2

.46 .40 .5

.28

.51

.39

.34
d

. . .

.30

.50

.37

.37

.3

.6

.4

.4

1.3
.26
.28
.46
.22

1.5
>2

1.1
1.0
1.8
1.3
1.4

.005

.009

.013

.012

.020

.008

.007

.002

.021

.015

.008

.9 .007
1.5 .005

.9

.7

.32
1.2

.007

.002

.010

.005

1.3 .014
1.1 .005

.24

.7
1.1

1.3
1.4

.013

.012

.010

.014

.010

.8 .010

.7 .010

1.1 .010 1.0

.9
1.4
1.1
1.7

>2

.013

.014

.013

.064

NOTE.-The entries in the table are for CM X 102.
aCML = maximum-likelihood estimate of c.
b The mesh size for these markers was .0002. For all other markers the mesh size was .001.
c Disease chromosomes omitted having nonancestral marker alleles that appear to have arisen from muta-

tion rather than recombination.
d Ellipses (.. .) mean that CH is less than the point estimate.

then even large A values have minimal effect, e.g.,
marker 4. The results in table 5 imply that kn = 100 is
a reasonable normal sample size since in this case A is
always <.1.

In table 6 bounds on CM are given assuming the size
of the disease sample is doubled. If CM for the original
sample is large, then increasing the sample size decreases
the bound marginally and one is still left with a large

1.20
.22
.24
.37
.22

1.40
>2

1.0
.9

1.7
1.2
1.3

.8
1.4

.8

.6

.28
1.1

1.2
1.0

.20

.6

.9

1.2
1.3

.7

.6

.7
1.3
.9

1.7
>2



Kaplan and Weir: Allelic Association Mapping

region to explore. On the other hand; if the original CM

is small, e.g., markers 1, 4, and 6, then increasing the
sample size does offer some potential decrease in the
size of the target region. The effect is not substantive
however, and the additional cost of obtaining a larger
sample may not be justified.

Discussion

Allelic association data can provide information that
is useful for fine mapping a disease gene. Unlike linkage
mapping, which relies on recombination events in fami-
lies, allelic association mapping exploits recombination
events that occur in the evolutionary history of the dis-
ease. This approach has the best chance of success for
relatively rare, simple genetic diseases that are not very
old and for which most of the disease chromosomes
descend from just a few ancestral mutations. Many of
the examples where allelic association has provided use-

ful information are for simple diseases from isolated
founder populations such as Finnish (de la Chapelle
1993), Ashkenazi Jew (Motulsky 1995) and Louisiana
Acadian (Sirugo et al. 1992). In these populations the
disease mutation is usually introduced with the found-
ers, and subsequently increases in frequency. If the popu-
lation is not very old, then recombination will not have
sufficient opportunity to completely break up the ances-

tral haplotype and the disease chromosomes exhibit a

common haplotype in a neighborhood of the disease
mutation. Allelic association mapping can also succeed
for diseases in nonfounder populations. The most strik-
ing example is CF. In this case, -70% of CF chromo-
somes worldwide descend from a single three-base dele-
tion, and the haplotype of the ancestral chromosome in
a neighborhood of the mutation has remained relatively
intact (Kerem et al. 1989).

If the mutation is of recent origin, then its initial
growth can be modeled as a Poisson branching process.
Within the context of this model three upper confidence
bounds on the recombination fraction are discussed: the
moment bound CH, the maximum-likelihood bound CM

and the tail-probability bound cp. In table 3 these
bounds are compared for 10 simple genetic diseases in
the Finnish population. The moment bound, CH, is al-
ways <.01 (<1 cM), and in many cases is much less.
Since the mean of the distribution of Pld is less than the
median, it is very possible that CH is biased downward
despite the attempts to adjust for the skewness. The
large values of P(CH) in table 3 support this conclusion.
Underestimating the value of c is a serious error to make
when devising a mapping strategy and one should be
very cautious in the use of CH.
The likelihood bound CM is often about twice as large

as CH and may be on the conservative side since most of

Table 4

The Effect of Mutation at Either the Disease or Marker Locus
on the Value of CM

RD

gM and MARKER .0 10-6 10-5

.0:
1. DTD/CSF1/TAGA ......... .28 .26 .14
2. EPM1/PFKL ................... 1.0.9 .8
3. CHH/D9S163 ..................9 .9 .7
4. CLN3/D16S298 .30 .30 .30 .18
5. CNF/D1 9S224 1............... 1.31.2
6. CLN1/HY-TM1...............24 .22 .12
7. APECED/D21S171 1........ 1.4 1.2
8. CLN5/D13S160 . ............ .8 .7 .4
9. SD/D6S286. 1............. 1.1 1.1 .9
10. CF/pKM.19b ........... 1.4 1.4 1.2

10-4:
1. DTD/CSF1/TAGA .......... .26 .24 .14
2. EPM1/PFKL ................... .9.9 .8
3. CHHID9S163 . 9.............. ..9.9 .7
4. CLN3/D16S298 .28.......... ..28 .30 .18
5. CNF/D1 9S224 1............... 1.31.2
6. CLN1/HY-TM1 .22........... 22 .20 .10
7. APECED/D21S171 1.4........ 1.4 1.2
8. CLN5/D13S160 . ............ .8 .7 .4
9. SD/D6S286. 1............ 1.1 1.1 .9

10-3:
1. DTD/CSF1/TAGA .......... .12 .12 .10
2. EPM1/PFKL................... . 8 .8 .7
3. CHH/D9S163 . 7.............. ..7.7 .5
4. CLN3/D16S298 .16 .18 .16

5.CNF/D19S224 1................ 1.2 1.1
6. CLN1/HY-TM1...............14 .12 .08
7. APECED/D21S171 1.3........ 1.3 1.1
8. CLN5/D13S160 . ............ .7 .6 .4
9. SD/D6S286. 0............... 1.0 .9 .7

NOTE. -Included in this table are results for only one marker for
each disease. The entries in the table equal CM X 102. The mesh size
was .001 except for markers 1, 4, and 6. For these three the mesh
size was .0002.

a Disease chromosomes omitted having nonancestral marker alleles
that appear to have arisen from mutation rather than recombination.

b This marker is an RFLP, so mutation at the marker was not consid-
ered.

the values of P(cM) are slightly less than the nominal
value .025. Overestimating c from a mapping perspec-
tive is clearly the preferable error. The error does not
seem to be excessive, since CM and cp typically differ by
no more than .001.
The results in table 4 argue strongly for ignoring mu-

tation at either of the two loci, unless the disease is very
rare (q < .001) or there is some evidence that either of
the two mutation rates is unusually large (e.g., 9D
> 10-5 or gM> 10-3). The predictions based on mo-
ment considerations also hold for CM (table 4). For exam-
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Table 5

Effect of Normal Sample Size on CM

Marker A k, CM- CM CM+

6. CLN1/HY-TM1 .04.04 80 .24 .24 .26
1. DTD/CSF1/TAGA . .08 128 .24 .28 .32
8. CLN5/D13S160.08.08 27 .8 .8 .9
2. EPM1/PFKL .....................09 54.81.0 1.1
7. APECED/D21S171 . 09.09 28 1.3 1.4 1.6
3. CHHID9S163 .10 .10 98 .7 .9 1.1
4. CLN3/D16S298.12.12 54 .28 .30 .40
5. CNF/D19S224 .12 .12 32 1.1 1.3 1.8
9. SD/D6S286 . 1 4.......14 46 .8 1.1 1.6
10.CF/pKM.19 ................... .16 38 1.01.41.6

NOTE.-The number of the marker is the same as in table 4. See
text for definition of A, CM-, and CM+. Values of CM-, CM, and CM+
are multiplied by 100. The mesh size was .001 except for markers 1,
4, and 6. For these three the mesh size was .0002.

a Disease chromosomes omitted having nonancestral marker alleles
that appear to have arisen from mutation rather than recombination.

ple, if RUD = 10-6 and q > .002, then gD/q < .0005, and
so ignoring mutation at the disease locus introduces an
error <.001. Even if liD = 10-5, the error is at most
.005 and could be much less if q is >.002. Ignoring
mutation at the marker locus introduces an error that
is approximately equal to gM. Hence, mutation rates on
the order of .001 or smaller can typically be ignored
for markers where the estimated value of CM ignoring
mutation is much larger than .001, e.g., EPM1/PFKL,
APECED/D21S1 71, and CLN5/D13S1 60.
When planning an allelic association study, sample

size is an important consideration. The results in table
5 indicate that the normal sample size, kn, should be
large enough to guarantee that A < .1. Since A
< 2CO.25/kn, kn = 100 is a conservative normal sample
size. The size of the disease sample is typically not de-
cided a priori, since disease chromosomes are difficult
to obtain. Often the investigator has access to a limited
number of disease chromosomes and as many of these
are typed as possible. The question of interest is whether
the additional work and cost to enlarge the sample can
be justified. Our answer to this question is based on the
behavior of CM. In particular, we focus on how CM
changes if the sample size is doubled. For the rare dis-
eases considered here, doubling the sample size is proba-
bly the most one could expect. Increasing the sample
size may alter fid, and so in table 6 we calculated CM
for reasonable upper and lower bounds on fid for the
combined sample. The results indicate that increasing
the sample size has marginal value, but might be infor-
mative if CM for the original sample is small. A prudent
strategy would be to type as many disease chromosomes
as is practical, and with values of fld and fin in hand,

assess whether it is worthwhile trying to enlarge either
of the samples.

For many of the diseases in table 1 the disease chromo-
somes were haplotyped for markers showing a strong
association with the disease. These data are important
because they provide support for the basic hypothesis
that most of the disease chromosomes descended from
a single mutation. If there is no dominant haplotype,
such as with Huntington disease (MacDonald 1992),
then one must be very cautious when using the allelic
association data. Fortunately, none of the genetic dis-
eases considered here show multiple haplotypes.
One would hope that haplotype data could be used

to help fine map a disease gene. Ramsey et al. (1993)
suggested a contingency table procedure that relied on
inferring the ancestral disease haplotype so that recom-
binant disease bearing chromosomes could be identified.
Kaplan et al. (1995) proposed a likelihood approach
that did not require inferring the ancestral haplotype.
Both methods led to the correct conclusion that the CF
gene lies telomeric to both markers pXV-2c and pKM-
19 (Kerem et al. 1989). Ramsey et al. (1993) also sug-
gested an empirical approach for using multiple marker
(>2) haplotype data for fine mapping a disease gene.
The statistical methods for analyzing haplotype data are
far from definitive, and additional work needs to be
done in this important area.

If one knows the relative positions of the markers,
then plotting a measure of association, such as Pexcess or
CM, as a function of the location of the marker can
in some cases reveal an obvious gradient and provide
information about the location of the disease gene. In
these cases one would begin looking for the disease gene

Table 6

Effect of Disease Sample Size on CM

Marker 2 X kd CM- CM CM+

8. CLN5/D13S160 .............. 54 .5 .8 1.0
7. APECED/D21S171 ......... 56 .9 1.4 1.5
5. CNF/D1 9S224 ................ 64 .9 1.3 1.5
10. CF/pKM.19 ................... 76.8 1.4 1.7
9. SD1D6S286 ........... 92 .7 1.1 1.2
4. CLN3/D16S298 .. 108 .18 .30 .40
2. EPM1/PFKL ..152 .8 1.0 1.1
6. CLN1/HY-TM1 .............. .160 .14 .24 .28
3. CHH/D9S163 ......... 256 .7 .9 1.0
1. DTD/CSF1,TAGA . .......... 316 .18 .28 .30

NoTE.-The number of the marker is the same as in table 4. See
text for definition of CM-, and CM+. Values of CM-, CM, and CM+ are

multiplied by 100. The mesh size was .001 except for markers 1, 4,
and 6. For these three the mesh size was .0002.

a Disease chromosomes omitted having nonancestral marker alleles
that appear to have arisen from mutation rather than recombination.
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in a neighborhood of the marker showing the largest
measure of association. Two examples where this ap-
proach worked were DTD (Hastbacka et al. 1993) and
CF (Kerem et al. 1989). It is informative if there is a
gradient for the measure of association, but having a
gradient may be due to "evolutionary luck" and be more
the exception than the rule.

It is of interest to compare the results of the present
article with others in the literature. Several authors give
moment estimates of c that are too small because they
ignore the frequency of the ancestral marker allele in
the normal sample. Hastbacka et al. (1992) did this for
markers near DTD because the allele frequencies in the
normal sample were so low. However, for Salla disease
(SD)/S286 and CLN5/D13S162 the frequencies of the
ancestral allele in the normal sample are not negligible
and cannot be ignored (.33 and .22, respectively). Also,
in both cases the sample sizes are quite small and so
sampling error could be an issue (for both markers A
= .14).
The authors studying autoimmune polyglandular dis-

ease type 1 (APECED) (Aaltonen et al. 1994) argue that
their estimate of CH should be smaller because of new
mutants (RD > 0). They suggest that -7% of the
APECED population are due to new mutations. It is not
hard to show (Hastbacka et al. 1992) that the fraction
of the APECED population due to new mutations is
approximately GRD/q. Since pD/q = .07/100 = .0007
and CM = .014 ignoring mutation, the error introduced
in CM due to 1D> 0 is negligible.
The strongest claim regarding a bound on c was made

by Mitchison et al. (1995) for a marker near CLN3.
These authors claim that the recombination fraction be-
tween CLN3 and the marker D1 6S298 is <.00014, im-
plying that the gene is within 14 kb of the marker. The
maximum likelihood bound, CM, assuming RD = 5
x 10-6 is .0024 which is 17 times the moment esti-
mate. The value of P(.00014) is -.28, supporting our
contention that one should be cautious about using such
a small bound. Only cloning the gene will reveal the
true distance.

Finally, it is important to keep in mind that allelic
association mapping can be used for relatively rare sim-
ple genetic diseases and that generalizing it to complex
diseases may not be appropriate. The strength of this
approach is that we can exploit the parametric popula-
tion genetic model to estimate the recombination frac-
tion and move beyond traditional hypothesis testing. For
complex diseases the Poisson branching model probably
does not hold since susceptibility alleles may not be rare
or of recent origin. Hence it is not currently clear how
to exploit the evolutionary history of the disease popula-
tion as was so successfully done for simple genetic dis-
eases.
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