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Localization of the Candidate Gene D-Amino Acid
Oxidase Outside the Refined I-cM Region of
Spinocerebellar Ataxia 2

To the Editor:
Spinocerebellar ataxia 2 (SCA2) is one form of the neu-
rodegenerative autosomal dominant cerebellar ataxias
(for review, see Harding 1983) and has been linked to
chromosome 12q (Gispert et al. 1993b) in 25 previously

described and 13 new families from a founder collective
of >500 patients in Holguin, Cuba (Auburger et al.
1990; Gispert et al. 1993a). Although SCA2 in most
patients cannot be distinguished from other spinocere-
bellar ataxias by clinical criteria, in some patients it
exhibits a particular phenotype with early neuropathy/
late slow saccades and late myoclonus (Orozco et al.
1990). Autopsy in 11 patients demonstrated olivo-
ponto-cerebellar atrophy with a selective sparing of the
dentate nucleus (R. Estrada, J. Galarraga, G. Orozco,
A. Nodarse, and G. Auburger, unpublished data). Com-
plete allelic association within the Holguin population
was established with the microsatellite D12S105 (Her-
nandez et al. 1995), and the candidate region was deter-
mined to be within a 6- cM region distal to the marker
D12S84, contrasting previous reports by Pulst et al.
(1993) and Lopes-Cendes et al. (1994) and according
to preliminary data between D12S84 and D12S1329
(Allotey et al. 1994).
The D12S105 sequence (hs262xb9.seq) including 342

bp representing the region of maximal allelic association
in the Cuban SCA2 founder effect was subjected to se-
quence homology analysis at the European Molecular
Biology Laboratories database and yielded an almost
perfect match with 99.70% similarity with intron 1 of
the human D-Amino acid Oxidase (DAmOx) gene,
which has previously been shown to be linked to all
SCA2 pedigrees worldwide with no recombination (Her-
nandez et al. 1995). The small sequence differences were
the result of length variations in the four primitive repeat
motifs contained in this intron. DAmOx has previously
been mapped by chromosome specific hybrids to chro-
mosome 12 and pseudogenes have not been detected
(Fukui and Miyake 1992). Primers designed from exons
1 and 10 of the DAmOx cDNA-sequence (Momoi et al.
1988) gave specific PCR products in the CEPH-
YAC838fS corresponding to the locus D12S105, con-
firming the physical localization and providing the inves-
tigation with an excellent candidate gene for SCA2, since
DAmOx is expressed specifically in spinocerebellar tis-
sue (Horiike et al. 1985) without its function being
known. A mutation in this DAmOx gene would fit well
with previous hypotheses on the pathomechanism of
spinocerebellar degeneration, since oral loading tests
with glutamate in such patients have demonstrated a
decreased metabolism of amino acids glutamate and
aspartate (Plaitakis 1982) and since accumulation of the
excitotoxic neurotransmitter glutamate is known to lead
to cerebellar Purkinje neuron death (Meldrum and
Garthwaite 1990), matching well the morphological
changes observed in SCA2.

Within intron 1 of the DAmOx gene a second (AC),
microsatellite is found that we termed D12S1O5a (AFM-
262xb9a). With flanking primers 5'-AGCAGTTGA-
GAGGATTGAGAGG-3' and 5'-GCAAGCTTGGAG-
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TATGTATCC-3' we performed genotyping in 25
Cuban SCA2 families and 2 families from the French
Caribbean (Martinique) with probable SCA2 (Belal et

al. 1994). Seven alleles were observed yielding a hetero-
geneity index of .79. In addition, six recently developed
microsatellites in the SCA2 candidate interval of 6
cM between D12S84 (AFM116xb8) and D12S79
(AFMO67yc5) andeight further new microsatellites
were genotyped in these families: D12S129 (Mont-
gomery et al. 1993), D12S338 (AFM291wd9), D12S353
(AFM304wg5), D12S1331 (AFM340xgl), D12S330
(AFMO86xd7), D12S317 (AFMO65ye9), D12S1328
(AFM240wel), D12S1329 (AFM291xe9), D12S1333
(AFM154tc5), D12S1332 (AFMal28yfl), D12S1330
(AFM312ybl), D12S354 (AFM304wh5), D12S369
(AFM142zc5), D12S366 (AFM351tbl), D12S349
(AFM299zd5) (see Gyapay et al. 1994; CEPH database).
This analysis identified recombinant events in families
Rs and Es and placed the SCA2 gene to the telomeric
side of D12S1328 (see table 1 and fig. la), excluding
conclusively the DAmOx gene from the SCA2 region
with a distance of 1 cM between the D12S1OSa micro-

satellite and SCA2. Fine mapping of the SCA2 locus
was helped further by the clinical characterization of a

previously undescribed Cuban SCA2 family named Be,
which consists of 4 branches ABe, MABe, HBe, and
CoBe and contains 155 affected members. Within the
branch MABe a crossing-over event was identified that
places the SCA2 mutation centromeric to D12S1329,
thus reducing the candidate region to -1 cM (see

fig. lb) between flanking markers D12S1328 and
D12S1329 (map according to Genethon, unpublished
data). It is important to note that further analysis of
these Rs and MABe recombinants by using newly gener-

ated microsatellites from the 1-cM candidate region will
be able to reduce the candidate region even further.

In contrast, the investigation of potential distantly
related SCA2 families seemed to be of limited value
for genetic mapping: Whereas the ancestral haplo-
type D12S105, D12SlOSa, D12S1328, D12S1329,
D12S1333, and D12S1332 (see table 1) is well preserved
among the founders of the 12 published families and 1
new family presented in table 1 and of additional 15
smaller families from Holguin (supporting the notion of
a Cuban founder effect), the Cuban D12S1329 allele
was not preserved in SCA2 families from France, Tuni-
sia, Canada, or the United States, and the Cuban
D12S1328 allele was preserved in only two of six non-

Cuban SCA2 families, thus giving little support for a

common origin of SCA2 families.
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Figure I a, Haplotype analysis in two meioses representative
of two branches of the Rs family from the Holguin SCA2 population.
Both the partial and the complete disease haplotype represent typings
in five affected individuals of the two family branches. b, Haplotype
analysis in a recombinant branch ofMABe (left) and a nuclear pedigree
representative of the rest of family Be containing 155 patients (right).
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Association Analysis of the Monoamine Oxidase A
Gene in Bipolar Affective Disorder by Using
Family-Based Internal Controls

To the Editor:
It is well accepted that association studies are a major
tool in investigating the contribution of single genes to
the development of diseases that do not follow simple
Mendelian inheritance pattern (so-called complex traits)
(e.g., Lander and Schork 1994). Such major psychiatric
diseases as bipolar affective disorder and schizophrenia
clearly fall into this category of diseases.
Lim et al. (1994) have recently observed a significant

overall association between bipolar affective disorder
and alleles of a microsatellite polymorphism at the
monoamine oxidase A (MAOA) locus in bipolar pa-
tients (n = 57) and controls (n = 59) of western Euro-
pean extraction. The finding of an overall association
was replicated by Kawada et al. (1995) in Japanese pa-
tients (n = 58) and controls (n = 68), although individ-


