
Supplement 3 - Analysis of biological data examples with RAR 

 

Application 1 – comparing microbial typing methods 

This example is described in the main text. This section of the supplement only contains an 

additional figure. 

 
Figure 1. Microbial typing of 325 S. pyogenes isolates by PFGE and emm typing. Top plot: 
Dendrogram derived from PFGE band pattern comparisons using Dice dissimilarity and average 
linkage. Bottom plot: emm type of the same 325 isolates (isolates are ordered according to the leaf 
order of the dendrogram).  
 

 

Application 2 – comparing regulatory network distance functions 

This case study analyses the yeast’s gene regulatory network organization. The directed graph 

model of this network was obtained from the work of Lee and colleagues with the 

experimental technique of chromatin immuno-precipitation on a chip [1]. The graph has 2415 

nodes representing genes, 106 of them being also transcription factors. These 106 genes have 

outgoing interactions, connecting them to gene targets whose transcription they regulate. A 

possible approach to study this network organization is to cluster its nodes into consistent 

modules, but first a definition of the distance between nodes is needed. Here, the clusterings 

originated by two possible distance definitions are compared. The first definition is based 

upon the number of transcription factors that simultaneously and directly regulate a given pair 

of target genes (nodes). The greater the number of common transcription factors, the smaller 

is the distance between the nodes. The computed distance was the total number of 



transcription factors in the network (106) subtracted by the number of shared factors). The 

second definition is to measure the distance between two nodes as the length of the shortest 

path connecting the nodes in the undirected version of the regulatory network. The 

hierarchical clustering algorithm with average linkage was applied for the two distance 

definitions [2]. For both clusterings 25 linkage distance threshold values were chosen, such 

that the resulting number of clusters would vary from 10 to 250, in equally spaced steps. Each 

cluster corresponds to a set of genes that are separated by a linkage distance equal or smaller 

that the linkage thresholds. For each of the 25 × 25 pairs of clusterings mean diagonal 

deviation (MDD), ranked adjusted rand (RAR), rand index (R), adjusted rand index (HA) and 

normalized variation of information (VI) were computed.  Note that RAR, R and HA are 

agreement measures while MDD and VI are disagreement measures.  

Figure 2 shows that, in this particular real data set, RAR and the HA produce similar results. 

An analogue parallel can be made between MDD and VI. Although correlations between these 

measures are clearly detected, they are not equivalent. The correlations reflect the fact that 

both RAR and HA (and MDD and VI) use the partition information to compare clusterings. 

But MDD and RAR also use information about the inter-cluster distances. It is this extra 

information that prevents the scatter plot of RAR versus HA (and also of MDD versus VI) 

from being a thin line.  

In Figure 3 the visual representations of the RMM matrix are presented, one for the linkage 

threshold with the best agreement (according to RAR) and other for a representative sub-

optimal agreement. These representations can enhance the comprehension of the level of 

agreement between the two clusterings. Comparing the two shown matrices it is easy to 

differentiate them. The left one has more red and yellow elements. These denser elements are 

more spread in the right matrix, thus corresponding to a weaker agreement. Indeed, the left 

matrix corresponds to the maximum RAR value observed for these clusterings at the different 

cluster numbers studied. In both matrices the more concentrated elements are not located 

exactly along the diagonal. Instead, they are slightly shifted upwards. This means that if two 

genes are members of close clusters according to the shortest path clustering, it is probable 

that they are located in even closer clusters (in terms of ranks) according to the number of 

common direct transcription factors. This kind of information is analogous to what is offered 

by asymmetric clustering comparison measures, but more detailed. There could be two 

clusterings C and C’ where half of the clusters in C had a very good match in C’, but the other 

half of C clusters were split into the most distant clusters in C’. Due to the averaging effect, 

the RAR values could be similar to the comparison of clusterings C with C’’, where all the 

clusters of C are split into not so distant clusters in C’’, but the graphical representations of 

RMM for the (C,C’) and (C,C’’) comparisons would certainly be different. Computing the 



mean diagonal deviations compresses the information contained in all the RMM matrix 

elements. In contrast with the previously available methods, RAR is inherently associated with 

this information rich visual output. 

 
Figure 2. Multiple scatter-plots of comparison measures applied to clusterings of yeast’s gene 
regulatory network by two distance definitions: 1) number of unshared direct transcription factors and 
2) length of shortest path between the two nodes in the undirected graph of the regulatory network. 
Each subplot has 25 × 25 dots, one for each pair of clusterings with different linkage distance 
thresholds. In the diagonal squares the clustering comparison measures are identified, as well as the 
limits of the respective axes.   
 

 
Figure 3. Graphical representations of RMM, the matrix that counts the entity pair (gene pair in this 
case) frequencies categorized by the neighbour rank between the respective clusters for both 
clusterings. If the two genes are in the same cluster according to the first (second) clustering they are 
going to contribute to the first row (column) of RMM. On the other extreme, if the two genes are in the 
most distant clusters according to the first (second) clustering they are going to contribute to the last 
row (column) of RMM. Each element of the matrix is here represented by a coloured rectangle. The 
colour codifies the frequency of gene pairs contributing to that element. The left matrix represents the 
best agreement (as measured by the maximum RAR) between the clusterings of the yeast’s gene 
regulatory network using two distance definitions: the number of unshared direct transcription factors 
(y axis) and the shortest path in the undirected graph of the regulatory network (x axis). 



 

Application 3 – comparing the agreement of different gene expression datasets with gene 

pathway information 

The second case study used the comparison of clusterings to address the following question: 

does the quality of the perturbations applied in microarray experiments have an impact on the 

co-expression of functionally related genes? Three yeast gene expression data sets were 

obtained through the WebMiner web tool [3]. The first data set contained all the cell cycle 

related experiments available in WebMiner, comprising data from 77 arrays. The second data 

set contained all the experiments related with metabolism, comprising data from 11 arrays. 

Finally, the third set contained all the stress response experiments, corresponding to 19 arrays. 

The WebMiner tool also provided a pathway for some of the genes in the arrays (381 

different pathway denominations where found for yeast genes). Only the 2512 genes involved 

in a known pathway (either experimentally confirmed or putative involvement) were used in 

this analysis. All the pair-wise correlations between expression profiles in each experiment 

set where computed. Correlation coefficients were subsequently transformed into correlation 

distances (1 – correlation coefficient) and used to hierarchically cluster the genes (again using 

the average linkage algorithm). As performed in the previous case study, 25 linkage distance 

thresholds were chosen, yielding 10 to 250 clusters. But now, all these different 3 (experiment 

type) × 25 clusterings were compared with the same gene pathway classification. For the 

pathway classifications there are no distances between clusters, since either two genes are 

involved in the same pathway or not. The same set of clustering comparison measures studied 

in the previous section was also applied here. To help in the interpretation of these results, the 

probability distributions of the pair-wise correlation distances, for gene pairs with the same 

pathway or not and for the three different data sets were estimated through kernel density 

estimation methods [4]. This case study provides a clear demonstration that the proposed 

measures can encode information that previous methods neglected. In Figure 4, both the HA 

and VI are unable to differentiate between the level of agreement (with gene pathway 

classification) obtained from metabolism related or stress response gene expression data. R is 

the least informative of all the tested measures, and equally evaluates the agreement between 

the three sets of gene expression data and gene pathway information. The inter-cluster 

distances in the gene expression data sets alone appeared sufficient to make RAR (and MDD) 

able to discriminate between the levels of agreement of the three kinds of experiments with 

the functional information about each gene. Additionally, the dissimilarity measures (MDD 

and VI), which are both uncorrected for chance agreement, are not concordant with the 

similarity measures (RAR and HA) about the agreement obtained with cell cycle gene 

expression data. The former consider cell cycle data as the closest to the pathway 



classification but the latter, after the correction for the expected chance agreement, consider it 

the worst agreement (for HA) or the intermediate agreement (for RAR). Analysing the 

distributions of the correlation distances in Figure 5, the low performance of the cell cycle 

data for RAR and HA evaluations is justified, since the two distributions are very similar 

(which indicates that clusters containing pairs of genes involved in the same pathway may 

easily have also genes involved in different pathways because the pair-wise distances have 

similar ranges). 

 
Figure 4. Quantitative evaluation of the agreement between gene expression clusterings and gene 
pathway classification through five different measures (one in each subplot) for different gene 
expression cluster numbers (x axis) and for three different types of experiments (different line colours 
and markers). 
 

 
Figure 5. Probability density functions of the pair-wise correlation distances, for gene pairs involved in 
the same pathway (red interrupted line) or not (blue continuous line) and for the three different gene 
expression data sets (one in each subplot).  
 



The data set of stress response experiments originates a larger difference between the two 

distributions, such that genes involved in different pathways tend to have higher correlation 

distances between expression profiles. This is reflected in the high RAR and HA for the 

agreement of stress response gene expression data clustering and functional annotation. For 

metabolism related experiments, there is a stronger probability that genes involved in 

different pathways have a relatively low correlation distance (in figure 5, the blue curve 

maximum is shifted to the left, as compared with cell cycle and stress response experiments). 

This is the reason why the worst agreements according to RAR are achieved with metabolism 

related data. HA is not sensitive to this distribution shift, even considering that the number of 

gene pairs involved in different pathways is much larger, and, consequently, changes in the 

distribution of correlation distances for genes involved in different pathways should have a 

major impact in clustering comparison measures.  

This example shows that RAR has a higher discriminatory power, as compared with HA, R 

and VI, and that it is the only measure that is sensitive to differential expression disagreement 

of pair of genes involved in different pathways.  
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