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Supplement material 
 

1. Taking into account the number of times each peptide was 
selected 

The information regarding the number of times each peptide was selected is available 
in seven datasets (1JRH, 1BJ1, 1N8Z, 1IQD, 1AVZ, 1G83, and 1HX1). In the 
clustering procedure it is possible to take this information into account by multiplying 
the score of each peptide by the number of times it was selected. Including the 
number of times each peptide was selected improved the predictions for three datasets 
(1BJ1, 1N8Z, and 1IQD), but slightly worsened the predictions of the 1JRH and 
1HX1 datasets (Table S1). 
 

 

Table S1. Results obtained with or without accounting for the frequency of each 

peptide.  

 Peptide frequency included Peptide frequency not included
PDB ID TPb / PEc 

p-value 
TPb / PEc 
p-value 

1JRH 10 / 28 
2×10-4 

10 / 25 
6×10-5 

1BJ1 11 / 30 
2×10-9 

5 / 30 
0.01 

1N8Z 8 / 11 
2×10-9 

0 / 21 
1 

1IQD 12 / 30 
2×10-4 

10 / 31 
0.009 

1AVZ 14 / 29 
9×10-11 

14 / 29 
9×10-11 

1G83 0 / 20 
1 

0 / 20 
1 

1HX1 
(random)  

12 / 27 
0.003 

10 / 17 
0.0005 

aNumber of residues in the true epitope bNumber of true positives cNumber of residues in the predicted 
epitope 
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2. The influence of the substitution matrix  
The type of amino-acid substitution matrix used for aligning a peptide to the antigen 
has a moderate influence on the quality of prediction. Results obtained using a 
substitution matrix that is specifically derived for each dataset, based on the amino-
acid frequencies employed when constructing the library, generally improved the 
performance compared to the original BLOSUM62 matrix. We have also tested the 
performance of PepSurf when the Grantham similarity matrix was used. The 
performance of the BLOSUM62 matrix was generally superior to that of the 
Grantham matrix. We note that a few gap penalties were tested for the Grantham 
matrix and the results are presented with a gap penalty of -10.0 that received the best 
overall p-values.   
 
 

Table S2. Results obtained with different substitution matrices 

 Modified 
BLOSUM62 BLOSUM62 Grantham 

PDB ID TPb / PEc 
p-value 

TPb / PEc 
p-value 

TPb / PEc 
p-value 

1JRH 10 / 28 
2×10-4 

11 / 26 
5×10-6 

10 / 29 
3×10-4 

1BJ1 11 / 30 
2×10-9 

7 / 35 
6×10-4 

7 / 27 
9×10-5 

1G9M 14 / 36 
5×10-10 

13 / 33 
4×10-9 

12 / 37 
3×10-7 

1E6J 14 / 23 
6×10-14 

0 / 16 
1 

5 / 25 
0.04 

1N8Z 8 / 11 
2×10-9 

8 / 11 
2×10-9 

9 / 12 
1×10-10 

1IQD 12 / 30 
2×10-4 

11 / 30 
0.001 

9 / 36 
0.09 

1AVZ 14 / 29 
9×10-11 

13 / 28 
2×10-9 

11 / 25 
3×10-7 

1G83 0 / 20 
1 

0 / 21 
1 

0 / 27 
1 

1HX1 
(random) 

12 / 27 
0.003 

10 / 21 
0.005 

10 / 18 
9×10-4 

1HX1 
(synthesized) 

5 / 7 
0.007 

3 / 6 
0.13 

5 / 7 
0.007 

aNumber of residues in the true epitope bNumber of true positives cNumber of residues in the predicted 
epitope 
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3. Heuristic versus exhaustive clustering  
The PepSurf algorithm includes a clustering step, in which the different paths are 
grouped to a connected component. The clustering step aims at finding the cluster 
with the highest score subject to a size constraint. As described in the manuscript, a 
heuristic approach was implemented for this task. However, when the number of 
peptides is small it is possible to consider an exhaustive approach that considers all 
possible path combinations. Due to its exponential nature we limit the exhaustive 
search for datasets with no more than 20 peptides. As can be seen in Table S3 the 
heuristic search produces similar results compared to the exhaustive search. In 5 out 
of 6 datasets, the heuristic and the exhaustive approaches resulted in identical 
predictions. In one dataset (1G9M), the exhaustive approach resulted in a higher 
scoring cluster. This cluster, however, had a slightly lower overlap with the true 
epitope. 

 

Table S3. Results obtained with the heuristic and exhaustive clustering algorithms 

 Heuristic Exhaustive 
PDB ID TPb / PEc 

p-value 
TPb / PEc 
p-value 

1G9M 14 / 36 
5×10-10 

12 / 38 
5×10-7 

1E6J 14 / 23 
6×10-14 

14 / 23 
6×10-14 

1N8Z 8 / 11 
2×10-9 

8 / 11 
2×10-9 

1AVZ 14 / 29 
9×10-11 

14 / 29 
9×10-11 

1G83 0 / 20 
1 

0 / 20 
1 

1HX1 
(random) 

12 / 27 
0.003 

12 / 27 
0.003 

aNumber of residues in the true epitope bNumber of true positives cNumber of residues in the predicted 
epitope 
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4. Exhaustive clustering taking into account suboptimal paths 
In the clustering step, it is possible to include not only the optimal paths but also 
suboptimal ones. We compared the performance of the exhaustive clustering method 
with and without considering suboptimal paths. As can be seen in Table S4 including 
suboptimal paths generally does not improve predictions.  

 

Table S4. Results obtained with the exhaustive clustering algorithm when considering 

suboptimal paths compared to considering only the optimal path  

 

aNumber of residues in the true epitope bNumber of true positives cNumber of residues in the predicted 
epitope 
 
 

 Optimal path only Considering suboptimal paths 
PDB ID TPb / PEc 

p-value 
TPb / PEc 
p-value 

1G9M 12 / 38 
5×10-7 

12 / 38 
5×10-7 

1E6J 14 / 23 
6×10-14 

0 / 22 
1 

1N8Z 8 / 11 
2×10-9 

14 / 25 
3×10-14 

1AVZ 14 / 29 
9×10-11 

13 / 29 
9×10-9 

1G83 0 / 20 
1 

0 / 20 
1 

1HX1 
(random) 

12 / 27 
0.003 

12 / 27 
0.003 
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5. Clustering paths versus residues 
As described in Materials and Methods two clustering procedures were tested. The 
first (termed 'Cluster Paths' below) clusters the most significant paths under a 
maximal size threshold. The second (termed 'Cluster Residues') assigns each residue 
in the graph a score based on the paths it participates in. It then searches for the 
cluster of residues with the highest score. As can be seen in Table S5 the accuracy of 
prediction of the Cluster Paths algorithm is slightly superior to that of the Cluster 
Residues algorithm.  
 

Table S5. Results obtained using different clustering algorithms  

 Cluster Paths Cluster Residues 
PDB ID TPb / PEc 

p-value 
TPb / PEc 
p-value 

1JRH 10 / 28 
2×10-4 

9 / 12 
1×10-7 

1BJ1 11 / 30 
2×10-9 

16 / 57 
1×10-13 

1G9M 14 / 36 
5×10-10 

16 / 58 
3×10-9 

1E6J 14 / 23 
6×10-14 

12 / 22 
2×10-10 

1N8Z 8 / 11 
2×10-9 

8 / 11 
2×10-9 

1IQD 12 / 30 
2×10-4 

7 / 15 
0.003 

1AVZ 14 / 29 
9×10-11 

12 / 29 
1×10-7 

1G83 0 / 21 
1 

0 / 7 
1 

1HX1 
(random) 

12 / 27 
0.003 

9 / 20 
0.013 

1HX1 
(synthesized) 

5 / 7 
0.007 

5 / 7 
0.007 

aNumber of residues in the true epitope bNumber of true positives cNumber of residues in the predicted 
epitope 
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6. Tuning the parameters of the algorithm 
The PepSurf algorithm depends on several parameters that may influence its resulting 
predictions. The results reported in the manuscript were obtained with default 
parameter settings: gap penalty = -0.5, distance cutoff defining a graph edge = 4Å, 
maximal cluster size = 2000Å2, "fill-in" cutoff = 75%, and p-value for obtaining the 
best path = 0.95. The effect of each such parameter on the resulting predictions is 
shown below. When testing the effect of a single parameter all other parameters were 
kept at the default values. 

6.1 The gap penalty 
Gap penalties in the range of -0.25 to -1.5 were tested. The results obtained using gap 
penalties of -0.25 and -0.5 were quite similar while higher gap penalties (or not 
allowing for gaps at all) generally produced inferior results (Table S6).    
 
 

Table S6. Results obtained with different gap penalties 

 δD = -0.25 δD = -0.5 δD = -1.0 δD = -1.5 No gaps allowed 
PDB ID TPb / PEc 

p-value 
TPb / PEc 
p-value 

TPb / PEc 
p-value 

TPb / PEc 
p-value 

TPb / PEc 
p-value 

1JRH 10 / 28 
2×10-4 

10 / 28 
2×10-4 

10 / 29 
3×10-4 

11 / 31 
5×10-5 

11 / 31 
5×10-5 

1BJ1 10 / 32 
1×10-7 

11 / 30 
2×10-9 

7 / 27 
9×10-5 

7 / 34 
5×10-4 

4 / 32 
0.06 

1G9M 15 / 35 
9×10-12 

14 / 36 
5×10-10 

13 / 33 
4×10-9 

12 / 36 
2×10-7 

9 / 31 
7×10-5 

1E6J 14 / 23 
6×10-14 

14 / 23 
6×10-14 

5 / 25 
0.04 

14 / 23 
6×10-14 

14 / 24 
2×10-13 

1N8Z 8 / 10 
7×10-10 

8 / 11 
2×10-9 

9 / 12 
1×10-10 

9 / 12 
1×10-10 

10 / 13 
5×10-12 

1IQD 12 / 30 
2×10-4 

12 / 30 
2×10-4 

9 / 36 
0.09 

9 / 35 
0.075 

10 / 38 
0.048 

1AVZ 11 / 14 
2×10-11 

14 / 29 
9×10-11 

11 / 26 
4×10-7 

9 / 31 
4×10-4 

10 / 29 
2×10-5 

1G83 0 / 20 
1 

0 / 21 
1 

0 / 26 
1 

0 / 31 
1 

0 / 22 
1 

1HX1 
(random) 

9 / 29 
0.17 

12 / 27 
0.003 

12 / 27 
0.003 

7 / 21 
0.17 

5 / 21 
0.57 

1HX1 
(synthesized) 

5 / 7 
0.007 

5 / 7 
0.007 

5 / 7 
0.007 

5 / 7 
0.007 

5 / 7 
0.007 

aNumber of residues in the true epitope bNumber of true positives cNumber of residues in the predicted 
epitope 
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6.2 The fill-in parameter 
The clustering algorithm augments the predicted cluster with residues that do not 
belong to any of the paths encompassed by the cluster. Specifically, a residue is added 
to the predicted cluster if most of its graph edges (≥75%) are connected to residues 
that are already in the predicted cluster. As can be seen in Table S7 other cutoffs 
(ranging from 50% to 100%) had little influence on prediction accuracy. Not 
including these fill-in residues generally resulted in inferior predictions.  
 
 

Table S7. Results obtained with different fill-in parameter values 

 50% 60% 70% 75% 80% 90% and 
100% No fill-in

PDB ID TPb / PEc 
p-value 

TPb / PEc 
p-value 

TPb / PEc

p-value 
TPb / PEc

p-value 
TPb / PEc

p-value 
TPb / PEc 
p-value 

TPb / PEc

p-value 
1JRH 10 / 15 

7×10-8 
10 / 25 
6×10-5 

10 / 28 
2×10-4 

10 / 28 
2×10-4 

10 / 28 
2×10-4 

10 / 28 
2×10-4 

10 / 28 
2×10-4 

1BJ1 5 / 24 
0.004 

11 / 31 
3×10-9 

11 / 30 
2×10-9 

11 / 30 
2×10-9 

11 / 31 
4×10-9 

11 / 29 
2×10-9 

11 / 32 
5×10-9 

1G9M 13 / 30 
8×10-10 

9 / 25 
1×10-5 

14 / 37 
9×10-10 

14 / 36 
5×10-10 

12 / 34 
1×10-7 

12 / 32 
5×10-8 

12 / 32 
5×10-8 

1E6J 14 / 24 
2×10-13 

14 / 24 
2×10-13 

14 / 23 
6×10-14 

14 / 23 
6×10-14 

14 / 22 
3×10-14 

14 / 21 
9×10-15 

13 / 30 
7×10-10 

1N8Z 9 / 14 
9×10-10 

9 /13 
3×10-10 

8 / 12 
7×10-9 

8 / 11 
2×10-9 

8 / 11 
2×10-9 

8 / 11 
2×10-9 

7 / 10 
5×10-8 

1IQD 14 / 31 
4×10-6 

13 / 28 
9×10-6 

12 / 30 
2×10-4 

12 / 30 
2×10-4 

12 / 30 
2×10-4 

11 / 33 
0.004 

10 / 31 
0.009 

1AVZ 12 / 27 
3×10-8 

14 / 29 
9×10-11 

14 / 29 
9×10-11 

14 / 29 
9×10-11 

12 / 17 
2×10-11 

12 / 17 
2×10-11 

11 / 16 
3×10-10 

1G83 0 / 22 
1 

0 / 22 
1 

0 / 20 
1 

0 / 20 
1 

0 / 20 
1 

0 / 19 
1 

0 / 18 
1 

1HX1 
random 

11 / 24 
0.004 

11 / 21 
8×10-4 

11 / 20 
5×10-4 

12 / 27 
0.003 

12 / 26 
0.002 

12 / 25 
0.001 

12 / 25 
0.001 

1HX1 
synthesized 

5 / 7 
0.007 

5 / 7 
0.007 

5 / 7 
0.007 

5 / 7 
0.007 

5 / 7 
0.007 

5 / 7 
0.007 

5 / 7 
0.007 

aNumber of residues in the true epitope bNumber of true positives cNumber of residues in the predicted 
epitope 
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6.3 The cluster size threshold 
In all analyses conducted, a size threshold of 2000Å2 was used. This value was chosen 
as follows. All antibody-antigen complex structures available in the protein data bank 
were retrieved using the SPIN database (http://trantor.bioc.columbia.edu/cgi-
bin/SPIN/). This search resulted in 251 complexes. By removing redundant structures 
(in which the same antibody and antigen were co-crystallized) and structures in which 
only a fragment of the antigen was present, a set of 62 structures remained. For each 
such complex, the residues comprising the epitope were inferred using the Contact 
Map Analysis server (http://ligin.weizmann.ac.il/cma/). The total surface area was 
measured by summing the surface accessibility of each residue included in the 
epitope. By analyzing the distribution of epitope area we found that 95% of epitopes 
encompass an area smaller than 2000Å2 (59 out of 62 epitopes), with the remaining 
5% representing mostly outliers (with a total surface areas of 2026 Å2, 2682 Å2, and 
6095 Å2). Running PepSurf with other size thresholds produced similar results with 
respect to the number of successful predictions (Table S8). 
 

Table S8. Results obtained with different cluster size thresholds 

 1000 1500 2000 2500 3000 4000 5000 
PDB ID TPb / PEc 

p-value 
TPb / PEc 
p-value 

TPb / PEc

p-value 
TPb / PEc

p-value 
TPb / PEc

p-value 
TPb / PEc 
p-value 

TPb / PEc

p-value 
1JRH 9 / 11 

3×10-8 
10 / 20 
4×10-6 

10 / 28 
2×10-4 

10 / 33 
0.001 

11 / 44 
0.003 

11 / 55 
0.039 

11 / 55 
0.039 

1BJ1 5 / 14 
2×10-4 

5 / 19 
0.001 

11 / 30 
2×10-9 

11 / 35 
2×10-8 

11 / 49 
9×10-7 

11 / 49 
9×10-7 

11 / 49 
9×10-7 

1G9M 9 / 21 
2×10-6 

9 / 21 
2×10-6 

14 / 36 
5×10-10 

16 / 45 
3×10-11 

16 / 45 
3×10-11 

18 / 64 
7×10-12 

18 / 70 
5×10-11 

1E6J 5 / 14 
0.003 

0 / 18 
1 

14 / 23 
6×10-14 

14 / 33 
6×10-11 

14 / 33 
6×10-11 

15 / 55 
6×10-9 

15 / 61 
4×10-8 

1N8Z 8 / 11 
2×10-9 

8 / 11 
2×10-9 

8 / 11 
2×10-9 

8 / 11 
2×10-9 

8 / 11 
2×10-9 

8 / 11 
2×10-9 

8 / 11 
2×10-9 

1IQD 7 / 15 
0.003 

10 / 25 
0.001 

12 / 30 
2×10-4 

12 / 40 
0.006 

12 / 41 
0.008 

14 / 64 
0.074 

14 / 64 
0.074 

1AVZ 8 / 10 
4×10-8 

11 / 15 
1×10-10 

14 / 29 
9×10-11 

14 / 33 
9×10-10 

14 / 33 
9×10-10 

14 / 33 
9×10-10 

14 / 33 
9×10-10 

1G83 0 / 16 
1 

0 / 20 
1 

0 / 20 
1 

0 / 20 
1 

0 / 20 
1 

0 / 20 
1 

0 / 20 
1 

1HX1 
random 

8 / 13 
0.002 

10 / 18 
9×10-4 

12 / 27 
0.003 

12 / 27 
0.003 

13 / 40 
0.056 

19 / 51 
4×10-4 

22 / 66 
9×10-5 

1HX1 
synthesized 

5 / 7 
0.007 

5 / 7 
0.007 

5 / 7 
0.007 

5 / 7 
0.007 

5 / 7 
0.007 

5 / 7 
0.007 

5 / 7 
0.007 

aNumber of residues in the true epitope bNumber of true positives cNumber of residues in the predicted 
epitope 
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6.4 The distance between two neighboring residues defining a 
graph edge 

In order to create the surface graph a distance cutoff between two residues should be 
provided. This distance defines whether two residues should be linked by an edge. 
Similar to other studies, 4Å was used as the default cutoff distance. This cutoff results 
in an average number of edges per residues of 5.25. Results obtained with other 
cutoffs, ranging from 3Å to 5Å, were inferior (Table S9). It seems that a cutoff too 
small misses a significant number of true neighboring residues (with an average 
number of edges per residues of only 2.3 and 3.9 for 3Å and 3.5Å, respectively). On 
the other hand, larger cutoffs create denser graphs (with an average number of edges 
per residues of 6.1 and 6.9 for 4.5Å and 5Å, respectively) resulting in a large number 
of possible paths and alignments that may not be biologically plausible.        
 
 

Table S9. Results obtained with different distances defining neighboring residues  

 3Å 3.5Å 4Å 4.5Å 5Å 
PDB ID TPb / PEc 

p-value 
TPb / PEc 
p-value 

TPb / PEc 
p-value 

TPb / PEc 
p-value 

TPb / PEc 
p-value 

1JRH 5 / 19 
0.1 

10 / 24 
4×10-5 

10 / 28 
2×10-4 

11 / 27 
8×10-6 

10 / 28 
2×10-4 

1BJ1 11 / 15 
7×10-14 

10 / 36 
5×10-7 

11 / 30 
2×10-9 

8 / 36 
8×10-5 

8 / 36 
4×10-5 

1G9M 10 / 33 
1×10-5 

15 / 31 
9×10-13 

14 / 36 
5×10-10 

10 / 29 
4×10-6 

14 / 33 
1×10-10 

1E6J 11 / 28 
2×10-7 

0 / 25 
1 

14 / 23 
6×10-14 

0 / 19 
1 

8 / 26 
3×10-4 

1N8Z 0 / 6 
1 

0 / 8 
1  

8 / 11 
2×10-9 

10 / 23 
1×10-8 

12 / 21 
4×10-12 

1IQD 6 / 26 
0.24 

11 / 32 
0.003 

12 / 30 
2×10-4 

6 / 30 
0.38 

6 / 31 
0.42 

1AVZ 0 / 9 
1 

0 / 28 
1 

14 / 29 
9×10-11 

0 / 19 
1 

0 / 29 
1 

1G83 0 / 10 
1 

0 / 20 
1 

0 / 21 
1 

0 / 19 
1 

0 / 19 
1 

1HX1 
(random) 

10 / 24 
0.016 

10 / 22 
0.007 

12 / 27 
0.003 

9 / 24 
0.053 

9 / 24 
0.039 

1HX1 
(synthesized) 

2 / 6 
0.42 

3 / 7 
0.2 

5 / 7 
0.007 

4 / 7 
0.048 

4 / 7 
0.048 

aNumber of residues in the true epitope bNumber of true positives cNumber of residues in the predicted 
epitope 
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6.5 P-value for obtaining the best path 
This parameter sets the number of coloring iterations performed by the alignment 
algorithm. Accordingly, the number of trials, n, needed in order to receive the best 
path with probability above p is  
 

)/!1log(
)1log(

kkk
pn

−
−

=
. 

 
In all runs p was set to 0.95 to ensure that the best path is found with a high 
probability. We note, however, that the number of iterations calculated is an 
overestimate. The best path usually includes several gaps and thus the number of 
iterations needed to receive the best path with the desired probability is much lower. 
Accordingly, if there are g gaps then  
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For example, if the length of the peptide is 14 and the best path includes one gap then 
the actual number of iterations needed in order to receive the best path with 
probability 0.95 is 14 times lower than if there are no gaps. In fact, this is roughly 
equal to setting p to 0.2 in the original equation. Indeed, identical results were 
obtained when the alignment algorithm was used with p ranging from 0.5 to 0.99 on 
the 1G9M and 1E6J datasets. Thus, it seems that the exact choice of the p parameter 
hardly influences the output of the algorithm.  
 
 


