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1. An example of high-dimensional kinetic networks 
The kinetic scheme for a double-headed myosin can be complex. Each head can go 
through kinetic transitions as shown in Scheme 6 of the main text. A state for a double-
headed myosin should include independent states in both heads. For example, if the head 
1 is in a state with ATP bound but away from actin, and the head 2 is in a state with ADP 
bound and actin bound, the state can be written as MT-AMD. Since each head has 8 
possible states in Scheme 6, the double-headed myosin has 82 = 64 states. Of course some 
states in this kinetic network are not populated due to the mechanical constraints between 
two heads. Each state has 6 possible transition directions as shown in Figure 5, namely 
forward and backward ATP hydrolysis cycle in each head and the change of actin affinity 
in each head. The whole kinetic network for the double-headed myosin is illustrated in 
Figure 6.  
 
Though the kinetic network is complex, the procedure of the EAB method to compute the 
dwell-time distributions is the same. The only task is to assign or hypothesize where the 
power stroke steps are in the network, and then introduce the absorbing boundary states 
accordingly to calculate the population of states exiting a dwell.  
 
2. Analytical solution of dwell-time distributions for the three-state kinetic scheme 
The reaction for the first-passage time of a cyclic kinetic scheme with three states is 
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The three equations for [A], [B] and [C] should be solved together so that we can 

calculate the dwell-time distributions from [B']d
dt

 and [C']d
dt

. Ether by the Laplace 

transform method or by the eigenvalue method, the analytical solutions for [A], [B] and 
[C] can be written as a summation of exponentials as:  
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where 1λ , 2λ  and 3λ  are eigenvalues and 
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coefficients ,  and  are determined by the initial conditions. The eigenvalues 1c 2c 3c 1λ , 

2λ  and 3λ  are solutions of a cubic polynomial: 
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With the eigenvalues solved, the eigenvectors can thus be obtained by solving the 
algebraic equations.  
 
3. Parameters for the global fitting of dwell-time distributions for single-headed 
myosin V 
The kinetic scheme for a single-headed myosin shown in Scheme 6 has 8 states. Using 
this scheme is, however, not successful in globally fitting to dwell-time distributions 
subject to 6 different experimental conditions (1). We had to add two more states in the 
scheme in order to fit all data at once: 
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The justification and the detailed explanations for the state addition will be shown in a 
coming publication. The power stroke is assumed to be in the transition AMD*→AMD, 
while the swinging back to the pre-stroke conformation is assumed to be in the transition 



M→MT. The rates found for global fitting are listed in Table 1. The unit for these rates 
without involving ligand concentrations is s-1, and the unit for those involving ligand 
concentrations (e.g., M→MT) is M-1s-1. All rates were chosen to satisfy detailed balance 
in any closed cycle and some rates were obtained from literature (2, 3). To model the 
effects of forces exerted by the optical trap, we used Boltzmann factors  and 

 for a proposed power stroke step to account for the energy surface 
adjustments due to forces, where 

/ BF x k Teα Δ

( 1) / BF x k Te α − Δ

xΔ  is the effective distance in the projected force 
direction, α is the proportion of the position of the transition state. The value used for xΔ  
is 18 nm, half of the power stroke distance, and the value used for α is 0.5, assuming the 
transition state is in the middle of the energy surface.  
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