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Neural Simulation 

 

Darwin XI’s behavior is guided by a simulated nervous system modeled on the anatomy 

and physiology of the mammalian nervous system but, obviously, with far fewer neurons 

and a much less complex architecture. It consists of a number of areas labeled according 

to the analogous neocortical, hippocampal and subcortical brain regions. Each area 

contains neuronal units that can be either excitatory or inhibitory, and each represents a 

local population of neurons. To distinguish modeled areas from corresponding regions in 

the mammalian nervous system, the simulated areas are indicated in italics (e.g., IT). 

 

During each simulation cycle of Darwin XI, sensory input is processed, the states of all 

neuronal units are computed, the connection strengths of all plastic connections are 

determined, and motor output is generated. In our experiments, execution of each 

simulation cycle required ≈200 ms of real time. The neural simulation was run on a 

Beowulf cluster containing 12 1.4 GHz Pentium IV computers running the Linux 

operating system. All sensory input from the brain-based device and motor commands to 

the device were communicated through wireless links between the device and one of 

cluster’s workstations. During each simulation cycle, all neuronal activities were saved 

on a hard disk, and Darwin XI’s position was recorded. 

 

In the present experiments, the simulated nervous system contained 57 neural areas, 

80,000 neuronal units, and ≈1.2 million synaptic connections. It included a visual system, 

a head direction system, a whisker system, a laser rangefinder system, a hippocampal 

formation, a basal forebrain, a value or reward system, and an action selection system. 

Fig. 2 shows a high-level diagram of the simulated nervous system including the various 

neural areas and the arrangement of synaptic connections. Specific parameters relating to 

each area and to patterns of connectivity are given in SI Tables 2 and 3. 

 

Sensory Input 



 

Visual images from Darwin XI’s CCD camera were filtered for color and edges. The 

filtered output directly affected neural activity in area V1, which is composed of 

functionally segregated subareas for color and shape. The CCD camera sends 320 × 240 

pixel RGB video images, via an RF transmitter, to a frame grabber attached to one of the 

workstations running the neural simulation. The image was spatially averaged to produce 

an 80 × 60 pixel image. Different sized Gabor filters (2 × 2, 4 × 14, 16 × 16, and 32 × 32) 

were used to detect vertical edges of varying widths. The output of the Gabor function 

mapped directly onto the neuronal units of the corresponding V1 subarea (V1-width2, V1-

width4, V1-width16, and V1-width32). The RGB video was transformed into YUV color 

space. Color filters in UV space (red, green, yellow, and blue) were applied to the image. 

The outputs of the color filters were mapped directly onto the neuronal units of V1-red, 

V1-green, V1-blue, and V1-yellow. V1 color neuronal units projected nontopologically to 

inferotemporal cortex IT, and V1 edge units projected retinotopically to parietal cortex Pr 

(see Fig. 2 and SI Table 3). 

 

A head direction system was modeled after areas of the rodent nervous system (e.g., 

anterior thalamic nuclei) that respond selectively to the animal’s heading (1, 2). Neurons 

in these areas are often called head direction cells. Odometer information obtained from 

Darwin XI’s wheels was used to estimate current heading. This information was input 

into the head direction neural area (HD). Each of the 360 HD neuronal units had a cosine 

tuning curve, which responded maximally to a preferred heading with a tuning width of π 

radians: 

 

( 5)_cos( headingcurrHDi − ) ;        (1) 

 

where HDi is a head direction cell with a preferred direction of ( π2
360

i ) and i ranges 

from 0 to 359. 

 



The head direction cells projected topographically to an area analogous to the anterior 

thalamic nucleus (see HD→ ATN in SI Table 3 and Fig. 2) and to a motor area (see HD→ 

MHDG in SI Table 3 and Fig. 2) used for selecting a new heading (see below). 

 

The whisker system consists of artificial whiskers and a model of somatosensory whisker 

barrel cortex. The whiskers produce activity in a set of thalamic lag units. Each lag cell is 

characterized by an internal state ( ), an output ( ), and a cell-specific lag parameter 

set to be 
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ii }ψ  for cell i in each whisker barrel. When triggered by a 

whisker deflection, the internal  state of cell i in the corresponding barrel increases at 

rate determined by

in
is

iψ . When this internal state reaches a threshold, the cell begins to emit 

an output signal and  is reset to zero. Because of differences in in
is iψ  among lag cells, 

each whisker deflection evokes a wave of activity in the corresponding barrel, with some 

cells firing shortly after deflection and the remainder firing with gradually increasing 

delays. 

 

Specifically, the internal state of each lag cell i, in the barrel corresponding to whisker k, 

is updated according to: 
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where )(tdiffk is the difference between successive whisker readings averaged over the 

last four samples (a value exceeding 3.0 signifies a whisker deflection), and is a 

firing threshold set to 0.3. 

fire
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The output  is calculated by using: kis
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where iω  = 0.8 determines the persistence of unit activity. This value is fed as input into 

neuronal units in the corresponding barrels of S1. 

 

Darwin XI’s has three sensory whiskers on each side are arranged in a vertical stack. 

Whiskers are therefore referred to by the symbols LT, LM, LB to describe respectively 

the left top, left middle, and left bottom whiskers. Whisker lag and primary 

somatosensory areas in the simulation use these position suffixes to denote the whisker 

they receive input from (e.g., WLLT, S1LT). 

 

A laser rangefinder (SICK LMS-200) produced distance-to-wall data, which was used by 

the CARMEN software package (http://carmen.sourceforge.net) to produce an estimate 

of device location. This location estimate was turned into activity in a topologically 

organized pseudocortical area (SMAP; see Fig. 2) that projected to ECin. Each neuronal 

unit in SMAP responded preferentially to a particular place in the environment, and had a 

Gaussian tuning curve with 0.8 m standard deviation. Note that the laser data are being 

used merely as another sensory modality. Although the laser system produces an explicit 

estimate of location, this information is not necessary for producing place activity in the 

hippocampus. 

 

Hippocampus 

 

The architecture of the simulated hippocampal formation was based on rodent 

neuroanatomy. The input streams into the hippocampus are from the associative cortical 

areas in the simulation (see ATN→ ECIN, IT→ ECIN, PR→ ECIN in SI Table 3 and Fig. 2). 

Parameter values for the neuronal units and connections in these areas were tuned such 

that each cortical area (ATN, PR, and IT) had an equivalent synaptic influence on ECIN 

(see SI Tables 2 and 3). The relative numbers of neuronal units in each area, and the 

intrinsic and extrinsic of connectivity of the hippocampus were implemented based on 



known anatomical measurements (3-5). The perforant path projects mainly from 

entorhinal cortex to the dentate gyrus but also to the CA3 and CA1 subfields (see ECIN→ 

DG ECIN→ CA3, ECIN→ CA3 in SI Table 3 and Fig. 2). The mossy fibers (see DG→ CA3 

in SI Table 3 and Fig. 2), Schaffer collaterals (see CA3→ CA1 in SI Table 3 and Fig. 2), 

and divergent projections from the hippocampus back to cortex (see CA1→ ECOUT→ 

ATN,IT,PR in SI Table 3 and Fig. 2) were also reflected in the neural simulation. 

Moreover, the prevalent recurrent connectivity found in the hippocampal formation was 

included in the model (see ECINβ → ECOUT, DG→ DG, and CA3→ CA3 in SI Table 3 and 

Fig. 2). 

 

There are distinct patterns of intrinsic and extrinsic, feedback and feedforward inhibitory 

connections in the hippocampal circuitry (5, 6). Feedback inhibitory connections (see 

EC→ ECFB→ EC, DG→ DGFB→ DG, CA3→ CA3FB→ CA3, CA1→ CA1FB→ CA1 in SI 

Table 3 and Fig. 2) and feedforward inhibitory connections (see EC→ DGFF→ DG, DG→ 

CA3FF→ CA3, CA3→ CA1FF→ CA1 in SI Table 3 and Fig. 2) were included in the model. 

These connections were important for separating inputs and maintaining network 

stability. 

 

A simplified model of the basal forebrain provided an extrinsic theta rhythm for the 

neural simulation. The function of the simulated basal forebrain area was to gate input 

into the hippocampus and keep activity levels stable. The BF area had a rhythmic activity 

over 13 simulation cycles: 

 

( ) ( )13modtthetatBF = ;         (4) 

 

where theta = {0.01, 0.165, 0.33, 0.495, 0.66, 0.825, 1.00, 0.825, 0.66, 0.495, 0.33, 0.165, 

0.01}. BF projected to all hippocampal areas with inhibitory connections (see BF→ 

ECIN,ECOUT,DG,CA3,CA1 in Fig. 2 and SI Table 3). The level of inhibition, which was 

adaptive, kept the activity in hippocampal regions within specific ranges: 
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where r denotes the region (i.e., ECIN, ECOUT, DG, CA3, CA1), sfr(t) is the scale factor at 

time t, sr(t) is the percentage of active neuronal units in region r at time t, tgtr is the 

desired percentage of active units in area r (ECIN = 10%, ECOUT = 10%, DG = 20%, CA3 

= 5%, and CA1 = 10%), and BFr(t) is the presynaptic neuronal unit activity for a 

connection from BF to hippocampus region r. 

 

Action Selection 

 

Activity in the simulated value system (Area S, Fig. 2) signals the occurrence of salient 

sensory events and this activity contributes to the modulation of value-dependent 

connection strengths in synaptic pathways (CA1→ S and CA1→ MHDG). The projection 

from our simulated CA1 to the value and goal decision areas is consistent with the 

connectivity between CA1 and nucleus accumbens and frontal areas (7, 8). Initially, S is 

activated by the hidden platform IR detector (see T+→ S in SI Table 3 and Fig. 2), causing 

potentiation of value-dependent connections. After experience, the value system could be 

activated by CA1. The magnitude of potentiation or depression is based on a neural 

implementation of a temporal difference learning rule (9, 10). 
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where )(tS  is the average activity of the value system at time t, τ is one theta cycle (13 

simulation cycles), R+ is positive reward and equal to 1 if the BBD is over the hidden 

platform. The basic idea of the temporal difference rule is that learning is based on the 

difference between temporally successive predictions of rewards. The goal of learning is 

to make the learner’s current prediction of expected reward match more closely the actual 

expected reward at the next time interval (τ). If the expected reward value increases over 



τ, TD is positive and affected synaptic connections are potentiated, and if the change in 

value decreases, TD is negative and affected synaptic connections are depressed. Further 

details on how the temporal difference is applied to individual synaptic connections are 

given in Neuronal Dynamics (below). 

 

Darwin XI selected a new heading when reaching the choice point of the plus maze. The 

device stopped moving forward, and the camera was panned 90° to the left, and wait for 

three seconds, then pan the camera 90° to the right and wait for a further three 

secondsThe average activity of MHDG was calculated during the wait periods. A softmax 

algorithm was used to create a probability distribution for choosing a new heading: 
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where newhdg is a possible new heading for Darwin XI, ( )newhdgM HDG is the average 

activity of MHDG at a possible new heading, hdg is the current heading, and h has two 

positions (current heading less 90° and current plus 90°). 

 

Neuronal Dynamics and Synaptic Plasticity 

 

A neuronal unit in Darwin XI is simulated by a mean firing rate model, in which the 

mean firing rate variable of each unit corresponds to the average activity of a group of 

roughly 100 real neurons during a time period of ≈200 ms. Synaptic connections between 

neural units, both within and between neuronal areas, are set to be either voltage-

independent or -dependent, and either plastic or nonplastic (see Fig. 2 and SI Table 3). 

Voltage-independent connections provide synaptic input regardless of postsynaptic state. 

Voltage-dependent connections represent the contribution of receptor types (e.g., NMDA 

receptors) that require postsynaptic depolarization to be activated (11, 12). 

 



The mean firing rate (s) of each neuronal unit ranges continuously from 0 (quiescent) to 1 

(maximal firing). The state of a neuronal unit is updated as a function of its current state 

and contributions from voltage-independent and voltage-dependent inputs (see Fig. 2). 

The voltage-independent input to unit i from unit j is: 

 

( ) ( )tsctA jij
VI
ij = ,          (8) 

 

where sj(t) is the activity of unit j, and cij is the connection strength from unit j to unit i. 

The voltage-independent postsynaptic influence, POSTVI
i , on unit i is calculated by 

summing over all of the inputs onto unit i: 
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where M is the number of different anatomically defined connection types (see SI Table 

3), Nl is the number of connections of type M projecting to unit i, and ϕ is the persistence 

of synaptic input. 

 

The voltage-dependent input to unit i from unit j is: 
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where  is a threshold for the postsynaptic activity below which voltage-dependent 

connections have no effect (see SI Table 2). 

σ vdep
i

 

The voltage-dependent postsynaptic influence on unit i, POSTVD
i , is given by: 
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The total postsynaptic influence on neuronal unit i is given by: 
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The new activity is determined by the following activation function: 
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Synaptic strengths are subject to modification according to a synaptic rule that depends 

on the preand postsynaptic neuronal unit activities. Plastic synaptic connections are either 

value-independent (see ECIN→ DG,CA3,CA1; DG→ CA3; CA3→ CA1; CA1→ ECOUT in 

Fig. 2 and SI Table 3) or value-dependent (see CA1→ S, CA1→ MHDG in Fig. 2 and SI 

Table 3). Both of these rules are based on a modified BCM learning rule (13). Synapses 

between neuronal units with strongly correlated firing phases are potentiated and 

synapses between neuronal units with weakly correlated phases are depressed; the 

magnitude of change is determined as well by preand postsynaptic activities. The specific 

parameter settings for fine-scale synaptic connections are given in the equations below 

and SI Table 3. 

 

Value-independent synaptic changes in cij are given by: 

 

( ) ( ) ( ) ( )siBCMtststc jiij η=+Δ 1 ,        (14) 

 

where si(t) and sj(t) are activities of post- and presynaptic units, respectively, and η is a 

fixed learning rate. The function BCM is implemented as a piecewise linear function, 

taking postsynaptic activity as input, which is defined by a sliding threshold, θ, two 

inclinations (k1, k2) and a saturation parameter ρ (ρ = 6 throughout): 
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The threshold is adjusted based on the postsynaptic activity: 

 

( θθ −=Δ s225.0 )           (16) 

 

Value-independent plasticity was subject to weight normalization to prevent unbounded 

potentiation: 
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where cij is a particular connection, and K is the total number of connections onto unit j. 

 

The rule for value-dependent plasticity differs from the value-independent rule in that 

synaptic change is governed by the presynaptic activity, postsynaptic activity, and 

temporal difference derived from the value system. The synaptic change for value-

dependent synaptic plasticity is given by: 

 

( ) ( ) ( ) ( ) ( ) ( )( )0002.01 ctctTDtststc ijijjiij −−=+Δ η ;     (18) 

 

where TD(t) is the temporal difference value at time t (see Eq. 6). The second term in Eq. 

18 generates synaptic decay toward the initial weight. This was necessary to enable the 

device to reverse its behavioral choice in the plus-maze task. 
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