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Detailed methods followed for searching and identifying new ependymins 

Public databases that were searched for previously unrecognized ependymin 

sequences included: GenBank [1], dbEST [2], Ensembl [3], Genoscope [4] and individual EST 

and genome projects such as for sea urchin the NCBI’s Sea Urchin Genome Resources [5] 

and the Max Planck Institute Sea Urchin Gene Catalogue [6]; for medaka the Mbase [7], the 

UTGenome Browser [8] and the NBRP database [9]. Where available, we used the protein 

sequence translations associated with the original author’s submission. Alternatively, when 

the submitting author’s translation of the ESTs or genomic sequences was not available, the 

most probable open reading frame (as assessed by the BlastX searches with higher score) 

was determined using the Sixframe option on Biology Workbench 3.2 [10]. In cases where 

several very similar or overlapping DNA sequences were obtained (from redundant ESTs or 

several readings in genome projects) and a consensus sequence was not provided by the 
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submitting author, these sequences were used as input for the web-based contig assembly 

program CAP3 [11, 12]. In most cases, this contig assembly process had enough sensitivity 

to give DNA sequences that, once translated, produced sequences with a single non-

fragmented open reading frame [13]. 

We used well-known ependymin sequences as anchors to retrieve gene sequences 

from public databases that were not cross-referenced with the ependymin gene family (often 

referenced as “unnamed protein product” or “hypothetical protein”). Specifically, these anchor 

sequences were used as queries in reverse position-specific iterated BLAST algorithm (PSI-

BLAST) [14], tBlastn and/or tBlastx searches [15] against the databases of non-redundant 

(NR) sequences and ESTs (filtering human and mouse sequences). All the UBRH (Unique 

Best Reciprocal Hits) obtained by this reciprocal Blast analysis [16] were treated as putative 

orthologues, their sequences were further analyzed, and a decision was taken on whether a 

given sequence (complete mRNAs, ESTs, or predicted from a genome sequence) was 

reliable enough to be included in the main data set for phylogenetic inference. In addition, all 

the links provided in the Ensembl [17] homepage for each gene from a sequenced or in 

progress genome project in which a bona fide ependymin gene has been previously reported 

(i.e., zebrafish and human) were inspected searching for additional predicted homologues of 

ependymin sequences or UBRHs present in others Ensembl hosted genomes. 

The InterPro database [18] and the NCBI’s Conserved Domain Database (CDD.v2.05) 

[19, 20] were used to scan the putative new sequences and substantiate their placement into 

the ependymin protein family. Detection of the ependymin domain in at least 105 consecutive 

amino acids was used as criterion for proper assignment of a given sequence to the protein 

family. The established sequence hallmarks of ependymin proteins [21-23] were searched for 

each sequence. The presence and localization of signal peptides was assessed with the web 
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based SignalP 3.0 Server [24]. The prediction of N-glycosylation sites was run in the 

NetNGlyc 1.0 Server [25]. Hydropathic profiles were obtained in ProtScale [26] by using 

normalized (from 0 to 1) Kyte-Doolittle scores [27] over a window length of 9. The prediction 

of cysteine bonding state and connectivity was run on the Disulfind server [28, 29]. Physical 

and chemical parameters for each protein sequence were computed using the ProtParam tool 

[30]. Other tools for protein sequence analysis were run on the PredictProtein server [31]. 

Caveat about the mouse ependymin genes 

Two ependymin genes from mouse are described in the literature [22] and in GenBank, 

the Epdr1_Mus [GenBank:AY027861] and the Epdr2_Mus [GenBank:AF353717]. However, in 

Ensembl [3] the Epdr2_Mus is the only one characterized, mapped and cross-referenced to 

the other ependymin genes [see additional file 4: Table_S3 for detailed results from mapping]. 

We attempted to map the Epdr1_Mus gene to the mouse genome using its reported 

nucleotide sequence as input for the SSAHA tool [32], but it mapped to the same genome 

location of the Epdr2_Mus gene, although with a lower score. However, when we used the 

nucleotide sequence of Epdr1_Mus as input in SSAHA and mapped it against the human 

genome, we obtained a perfect match to exactly the same genome location of the 

Epdr1_Homo gene, obtaining similar high scores as when the Epdr1_Homo was used as 

input. This result questions the existence of two different ependymin genes in the mouse 

genome. The percentage of amino acid difference between Epdr1_Mus and Epdr2_Mus is 

only 6.25%, which is very similar to the percentage of difference between Epdr2_Mus and the 

human sequence Epdr1_Homo (5.80%). Particularly intriguing is the difference between 

Epdr1_Mus and Epdr1_Homo, which is only 0.45 % (only two amino acids are different); and 

at the nucleotide level the coding sequences of these two genes have 99.3% identity. Thus, 
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from the map data and the percentage of similarity, we suggest that Epdr1_Mus is actually 

product of human contamination of a PCR reaction made from a mouse C57BL/6 thymus 

cDNA library using primers from a human sequence [22]. 

Comparative analysis of the predicted amino acid modifications in ependymin proteins 

Additional information has been obtained from predicted amino acid modifications, 

including N-myristoylation, N-glycosylation and phosphorylation sites. Most ependymin 

proteins have at least two putative glycosylation sites. Exceptions to this are Ciona_Tun2 with 

none and Fugu_Tj, Diplo_Tun and Aplysia with only one. The location of the putative 

glycosylation sites varies according to the groups: FishBrain ependymins show putative 

glycosylation sites at 69-77 and 92-101, while for the other groups the sites differ: MERPs 

(113-132 and 166-196) FishTj (64-69 and 89-132). Similarly, most ependymins have at least 

one predicted myristoylation site. Exceptions to this are Esox_luciu, Salmo_Bra, Xetr_Frog 

and Aplysia. However, the site of the predicted myristoylation varies. In FishBrain, 10 out of 

the 13 species have the site localized between residues 133 and 166. In MERPs, with the 

exception of Sea_cucumb and Danio_MERP, the myristoylation site is within the signal 

sequence. Finally, in FishTj, two sites can be predicted: One present in residues 62 or 63 and 

one between 126 and 128. The sole exception to these two sites is Salmo_IH where the 

predicted myristoylation sites are residues 130 and 201. 

Except for the Basal group, all other ependymin groups show particular predicted 

phosphorylation sites. The Basal group is too variable to define a particular trend in these 

predictions. In the FishTj group, 7 out of 9 sequences show a predicted Protein kinase C 

(PKC) phosphorylation site between residues 72 and 92, while the remaining two show the 

site at positions closer to the carboxyl terminal (141 and 163). Six out of the 9 sequences 
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show a Tyr phosphorylation site between residues 43-57. All sequences have at least one 

predicted Casein kinase II (CK2) phosphorylation site between residues 147 and 194. MERPs 

also have at least one CK2 phosphorylation site 115-134, and all vertebrate species show a 

second putative site between residues 158-183. In addition, MERPs are characterized by at 

least 4 different predicted PKC phosphorylation sites, the most common residues being those 

around 57-62, 152, 156-158, 168-178 and 188-202. In contrast, most of the predicted PKC 

phosphorylation sites for FishBrain ependymins lie near the amino terminal of the molecule. 

However, only one of them, between residues 95 and 103, is found in the majority (10 out of 

13) of the molecules. These same molecules show a predicted cAMP- and cGMP-dependent 

protein kinase phosphorylation site between residues 97 and 105. Finally, with the exception 

of Fugu_Brain, Tetraod_Br and Clupea which only show 2-3 predicted CK2 phosphorylation 

sites; most FishBrain ependymin sequences show at least five predicted sites. The most 

common positions for these sites are residues 66-77, 91-95, 126-130, 178-184, and 196-210. 

Amino acid signatures that define each ependymin protein group 

FishBrain Epds (Figure 5A) are characterized by having a conserved sequence around 

the second Cys (C106) that starts with either a Phe or a Tyr: [Y/F]97ZXZ-kNZSC-K--L----

HXXZXP--A124. This region is rich in acidic residues, 7-8 per sequence, with the most 

commonly acidic positions marked with Zs. Hydrophobic residues are common in positions 

labeled with Xs. In this notation, numbers refer to the appropriate WebLogo in Figure 5, 

hyphens mean any residue, and amino acids in lower case indicate that only one or two 

sequences in the group do not display the corresponding residue. FishBrain Epds also have 

characteristic Phe residues in their sequences. Three of these are found in specific sites: F71 
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located eight residues down from the common Asp (D63), F91 twenty more residues farther 

down, and F192 seventeen residues down from the third Cys (C175). 

The FishTj group (Figure 5B) can be characterized mainly by the S27PP---G33 

sequence found one amino acid downstream from the initial Cys (C25). The second 

characteristic of this group is a stretch of amino acids G131XLvN-W-G139 where W137 is the Trp 

common to all Epds and the X is either Leu or Val. 

The first identifiable trait of the MERPs group (Figure 5C) is the sequence W51EGR54 

that can be found five amino acids after the first Cys (C45). A Gln (Q50) usually precedes this 

sequence except for Chicken_Gg and Fugu_MERP where a Glu has been substituted. The 

other sequence characteristic of the MERPs group is Q152EWSDR--aR--E-WXGxyT171 where 

the first W154 is the Trp common to all Epds, and X is either Leu or Val. The residues close to 

the fourth common Cys are also well conserved showing a sequence of G209I--p-VF-PPstC222, 

where the Pro (P213) has been substituted by Met in the echinoderm Epds. All the sequences 

from vertebrates that belong to the MERPs group have a Q77RxRxL82 sequence four amino 

acids down from the common Asp (D73). The X is a hydrophobic residue (Val, Ile or Leu). In 

non-vertebrate deuterostomes, only the sequence R78xR80 is present, and other mostly 

hydrophobic residues are maintained in other positions. 

The Basal group (Figure 5D) contains the only sequences where the common Trp 

(W136) is substituted with a Tyr in Diplo_Tun and Oyster_Cg, or by a Phe in Oyster_Cv. As 

expected, sequences in this group also have several residues that are found within other 

groups. For example, all species have the first Arg found in the R56xR58 sequence 

characteristic of the MERPs, but the second Arg is substituted by a Val in Aplysia and 

Biomphalaria. The Basal group also has the Tyr (Y86) nine residues prior to the second Cys 

which is present in most other species with the exception of the vertebrate MERPS where a 
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Phe is in this position. In addition, the members of this Epd group share three amino acids in 

common positions: (i) the Gly (G117) found 4 residues prior to the common Gly (G122); (ii) the 

Asp (D184) located seventeen residues prior to the final Cys; and (iii) the Phe (F195) that is 

eleven residues after this Asp. 
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