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APPENDIX 1
Following Schreiber et al (2003), we created the reliability statistic as follows.

Let {x; } and {y; } be the spike times from two trials with n and m spikes respectively. We can turn the {x; } into a continu-
ous function by allowing each spike time to be a Dirac delta function about x;. Thus

n
(1) {xi} = 2,6 (t-xy)
By convolving with a normalized Gaussian of width o, we turn the discrete spike times into a well behaved, smooth curve.
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Schreiber et al (2003) defines the reliability between two spike trains as the normalized dot product of these functions.
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However, whereas Schreiber et al (2003) advocates treating x and y as vectors, and calculating the dot product point by
point over an arbitrary At, we chose to keep them as continuous functions.
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Manipulating the numerator of the exponent in (6) by expanding the terms and completing the square yields:
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We can now write down the norms by defining | x | = Vx=*x and |y | = Vy*y.
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Finally, we can insert (7-9) into (4) and explicitly write the reliability in terms of spike times and .
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Although the expression appears bulky, it significantly speeds computation time when compared with treating x and y as
vectors. Reliability across N trials can be found by averaging the pairwise reliabilities:
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