
Supporting Text

Potential of Mean Effective Force. For a given separation r between two

solutes, the potential of mean force (PMF) describes an ensemble average over

directions between the solutes and over all the conformations of the surrounding

solvent molecules. We will show that the free energy change of the system does

not equal the change in the PMF, but they can be related by a simple formula.

In a liquid of spherically symmetric molecules, let r1 and r2 denote the po-

sitions of the solutes, and r3, . . . , rN denote the positions of solvent molecules.

Let rN = (r1, r2, . . . , rN ), r12 = |r1 − r2|, β = (kBT )−1, and the Hamiltonian

be H(rN ,pN ) = K(pN ) + Φ(rN ). Note that r12 is a reaction coordinate (often

denoted by ξ(rN ) (1)), which is itself a function of the configuration coordi-

nates rN . The PMF is given by w(r) = −kBT ln g(r), where g(r) is the radial

distribution function,

g(r) = g(r1, r2) = g(|r1 − r2|). (10)

g(r1, r2) is defined as (2)

P (r1, r2) = ρ2g(r1, r2) (11)

where ρ is the solute density. P (r1, r2) is the probability that any solute is in

dr1 and another is in dr2 (hence a factor of 2 in the next equation).

g(r1, r2) = ρ−2 · 2 ·
∫

e−βΦ(rN )dr3 · · · drN∫
e−βΦ(rN )dr1 · · · drN

. (12)

Of crucial importance is the normalization condition for g(r). By definition,∫ ∞

0

ρg(r)4πr2dr = 1. (13)
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We can also define a probability density function P (r) which has a different

normalization condition,

P (r) =
ρ2

2

∫
g(r1, r2)δ(|r1 − r2| − r)dr1dr2. (14)

The prefactor is chosen such that
∫∞
0

P (r)dr = 1. The probability density is

used in the constrained molecular dynamics method by Sprik and Ciccotti (1),

where they denote the free energy W for a given value ξ = ξ′ as

W (ξ′) = −kBT lnPξ(ξ′) (15)

Pξ(ξ′) = 〈δ(ξ(r)− ξ′)〉. (16)

For the special case here, we can equate ξ′ = r, ξ(r) = r12, and the free energy

for a given value r12 = r is given by the function W (r). In contrast, the PMF,

w(r), is different from W (r) because P (r) = ρ · 4πr2g(r).

W (r) and w(r) can be related as follows. First, we start with the potential

W (r),

W (r) = −kBT lnP (r) (17)

P (r) = N
∫

drNe−βΦ(rN )δ(r12 − r), (18)

where N is a normalization factor.

The derivative of W (r) can be expressed as an ensemble average:

dW (r)
dr

= −β−1
∂
∂r

∫
drNe−βΦ(rN )δ(r12 − r)∫

drNe−βΦ(rN )δ(r12 − r)
(19)

= −β−1
∂
∂r 〈δ(r12 − r)〉
〈δ(r12 − r)〉

. (20)

We can change variables to relative and center of mass coordinates of two
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solutes, dr1dr2 = r2
12dr12dΩdR.

N−1P (r) =
∫

drNe−βΦ(rN )δ(r12 − r)

=
∫

dr3 · · · drN

∫
dΩdR r2e−βΦ(r,Ω,R,r3,...,rN )

Now we can evaluate the numerator in Eq. (20),

−β−1 ∂

∂r

∫
drNe−βΦ(rN )δ(r12 − r)

=
∫

dr3 · · · drNdΩdR
(
−2
rβ

+
∂Φ
∂r

)
r2e−βΦ(r,Ω,R,r3,...,rN )

=
−2
rβ

∫
drNe−βΦ(rN )δ(r12 − r) +∫

dr3 · · · drNdΩdR
∂Φ
∂r

r2e−βΦ(r,Ω,R,r3,...,rN ).

The last term on the RHS can be recast as a conditional average:

∫
dr1 · · · drN

∂Φ(r12,Ω,R, r3, . . . , rN )
∂r12

e−βΦ(rN )δ(r12 − r) (21)

Finally, a major result

dW (r)
dr

=
−2kBT

r 〈δ(r12 − r)〉+ 〈 ∂Φ
∂r12

δ(r12 − r)〉
〈δ(r12 − r)〉

(22)

=
−2kBT

r
+

〈
∂Φ
∂r12

〉cond

r12=r

. (23)

In Sprik and Ciccoti’s treatment of constrained molecular dynamics, they

identified the free energy W as the potential of mean force (1). However, the

probabilistic definition in Eq. (15) is different from the convention of PMF in

classical liquid theory (2). From the definition of w(r), the mean force acting

on a solute is

−∂w(r1, r2)
∂r1

=

∫
e−βΦ(− ∂Φ

∂r1
)dr3 · · · drN∫

e−βΦdr3 · · · drN
. (24)
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We can compute w(r) by using Eq. (23):

dw(r)
dr

= −kBT
d

dr
ln g(r) (25)

= −kBT
d

dr
ln

P (r)
4πr2ρ

(26)

= −kBT

(
d

dr
lnP (r)− 2

r

)
(27)

=
dW (r)

dr
+

2kBT

r
(28)

=
〈

∂Φ
∂r12

〉cond

r12=r

. (29)

The constraint force between the solutes is related to the change of the

Helmholtz free energy F (r;T, V,N),

f̄(r) = − ∂

∂r
F (r;T, V,N) = kBT

d

dr
lnQ(r), (30)

where the conditional partition function Q(r) is given by

Q(r) =
∫

drNdpNe−βH(rN ,pN )δ(r12 − r). (31)

The conditional partition function Q(r) is proportional to the probability den-

sity function P (r), so

f̄(r) = kBT
d

dr
lnQ(r) = kBT

d

dr
lnP (r) = −dW (r)

dr
, (32)

or equivalently,

f̄(r) =
2kBT

r
− dw(r)

dr
. (33)

Finally, the PMF (up to a constant) is given by

w(r) =
∫ r

r0

−f̄(r′)dr′ +
∫ r

r0

2kBT

r′
dr′ (34)

= W (r) + 2kBT ln r + const , (35)
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which is Eq. (6) in the paper.

The difference between the PMF and PMEF can be understood qualitatively

as follows. When two solutes are constrained to a fixed distance, the entropy S

of this two-particle system is reduced. The contribution T∆S to the free energy

when the two solutes are brought from r0 to r in an isothermal process is

∆F (r0 → r) = −T∆S(r0 → r) = −kBT ln
r2

r2
0

, (36)

hence the appearance of 2kBT ln r in Eq. (35).

Data Collection and Error Analysis. In the constrained MD method, one

calculates the constraint force directly, and then integrates the mean force to

obtain the PMEF or PMF. Here we examine the statistical error involved in

obtaining the mean force. As noted in the main text, the hydration structure

around a methane pair is less stable at certain methane-methane separations.

This is reflected in the slow convergence of the constraint force at those methane-

methane separations. Fig. 8 shows the convergence of the constraint force.

Whereas at a separation r = 5.6 Å, the time average of the constraint force

converges in about 3 ps, the mean force at r = 4.4 Å exhibits larger fluctuations

over a longer time scale (Fig. 8(b)). A longer MD simulation shows the mean

force at r = 4.4 Å can drift from being repulsive to attractive (Fig. 8(c)). The

last column in Table 1 is the RMS constraint force fluctuation, analyzed by

the method of the statistical inefficiency (see M. P. Allen and D. J. Tildesley,

Computer Simulation of Liquids (1989)). This gives a measure of the error in the

calculated mean force. The difference in the average force for total simulation

time 6 ps and 10 ps is also given in Table 1 as an additional measure of statistical
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error.

Solubility Data and Transfer Free Energy. The transfer free energy of a

hydrophobic solute from liquid n-alkanes to water can be calculated by Eq. (9) of

the paper. Fig. 9 shows the transfer free energy of methane, ethane, ..., decane

at room temperature, compiled by Sharp et al. (3). The molar volume ratio term

in Eq. (9) of the paper is critical to obtain the almost perfect linear relationship

shown in Fig. 9. We are interested in the temperature dependence of the transfer

free energy. At higher temperatures, due to the low boiling temperature of small

n-alkanes (from methane to butane), partition-coefficient data is only available

for transfer between gas phase and water (5; 6). Fig. 10 shows that solubility

decreases with increasing temperature. Note that the temperature dependence

of molar fraction solubility of methane behaves differently from other small n-

alkanes. Fig. 11 shows the transfer free energy from gas phase to water at 298

K and 343 K. When temperature increases from 298 K to 343 K, the transfer

free energy per unit area increases by 39%.

Force between Two Methanes. In a recent paper, Ikeda and Terakura

provided some additional support for the use of the PBE functional in the

simulation of water/methane systems (7). They found some of the weak van

der Waals forces for methane-water and methane-methane complexes are re-

produced within DFT/PBE. Fig. 12 shows the force between 2 methanes in

vacuum calculated by PBE-GGA and Lennard-Jones potentials. The force de-

rived from DFT depends on the relative orientations of the two methanes. On

the other hand, the force derived from Lenard-Jones potentials can be regarded
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as the average over all relative orientations of the two molecules. Since the

hydrophobic attractive force in Fig. 1(a) of the paper is of the order of 0.001

au, its magnitude is much larger than the force between 2 methanes in vacuum

when r > 4 Å.

As shown in Eq. (8), the hydrophobic force between two methanes can be

estimated via the surface-tension model. A derivation is given here. Denote

the radius of water as rW , the radius of methane as rM , and ρ0 = rW + rM .

When the distance between two methanes r is such that 2rM < r < 2ρ0, the

solvent-accessible area is

∆A = 8πρ2
0 − 2 · ρ2

0

∫ θ

0

sin θdθ

∫ 2π

0

dφ

= 8πρ2
0 − 4πρ2

0 · (1− cos θ)

= 8πρ2
0 − 4πρ2

0

(
1− r/2

ρ0

)
.

From the last expression, it can be readily seen that the total available solvent-

accessible area is 8πρ2
0, the maximum buried area is 4πρ2

0(1−rM/ρ0), or 20.8955%

of the total available solvent-accessible area. Now, from Eq. (7), the free energy

change in the surface-tension model is

∆G = σ ·∆A,

so we can differentiate ∆G with respect to the separation r and obtain the

hydrophobic force

f = −σ · dA

dr
= −σ · 2πρ0.
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