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Methods

Measuring the lifetime of the wc-1 mRNA. A bd, his3 a N. crassa strain (87-84) kindly

provided by J. C. Dunlap and J. J. Loros (Department of Biochemistry, Dartmouth

Medical School, Hanover, NH) was crossed with a wc-1, met-7 A strain (FGSC 3914).

Offspring 87-84-6 was confirmed to be his-3 wc-1 at 34°C and was transformed with a

plasmid pDE3dBH-qa-2:wc-1 (targeting the his-3 locus) kindly provided by Y. Liu (1)

using the spheroplast method and histidine selection (2). Transformant 87-84-6-8 was

tested to band at 0.001 M quinic acid (QA) + 0.17% arginine + Fries medium and not to

band on 0.1% glucose + 0.17% arginine + Fries medium in race tubes (3); transformant

87-84-6-8 was also confirmed to be wc-1,a by growth at 34°C on 2% glucose + Fries

medium and a cross to a bd A (FGSC 1858). In each lifetime, experiment transformant

87-84-6-8 was grown in 16 or more replicate 500-ml flasks with 120 ml of QA (0.0192%

or 0.3%) + Fries medium liquid culture for 4 h at 25°C in a shaker (New Brunswick

Scientific, Edison, NJ, Series 25) at 150 rpm under 70 µm/s per m2 light source and then

shifted to 2% galactose (or 2% glucose) + Fries medium in the dark (or light) (other

conditions same). For each time point, a culture was harvested by vacuum filtration

through a Buchner funnel onto 541 Whatman paper and frozen at -70°C for later RNA

isolation using the High Pure RNA isolation kit (Roche). The quality and quantity of the

RNAs were assessed by using an RNA Nano LabChip (Agilent Technologies). RNA was

analyzed by real-time PCR (rt-PCR). cDNAs were synthesized from 1.6 µg of total RNA

with the High-Capacity cDNA Archive (synthesis) kit (Applied Biosystems). wc-1 and

rRNA cDNAs were detected by rt-PCR (ABI-Prism 7500, Applied Biosystems) according

to the manufacturer’s directions by using TaqMan probes. Triplicate reactions (50 µl)

were analyzed by using the ∆∆CΤ method (Applied Biosystems). As a control, five zero-

time points were collected before shift to the preferred carbon source (induced) as well as

11 time points under shift from glucose to glucose (2%) (noninduced) and quantitated for

the level of wc-1 mRNA. The control enabled us to determine the full range of response

of the QA-inducible switch.



Ensemble identification of genetic networks. In trying to model the foregoing

experimental data in terms of a genetic network such as shown in Fig. 1, we are faced

with a fundamental and ubiquitous difficulty of systems biology: essentially all of the

relevant model parameters (including, e.g., molecular species initial concentrations and

reaction rate coefficients) are unknown, and there is a large number of such unknown

parameters whereas the available experimental data are sparse and noisy. Even a

relatively simple genetic network can require many unknown model parameters. For

example, 47 parameters (including 16 initial species concentrations, 26 rate coefficients

and 5 unknown concentration unit conversion factors) are required to model the above-

described experimental data sets with the simple circuit in Fig. 1. The unknown

parameters are typically poorly constrained only by a sparse set of noisy profiling data,

available only for a limited number of molecular species (e.g., 183 data points for

altogether five different species in the N. crassa clock system in the dark). To obtain a

meaningful comparison of the model to the available data (3-6), we have used a novel

ensemble method (7, 8) of circuit identification which was developed for the context of

sparse, noisy time-dependent profiling data without requiring, e.g., any stationary state

assumption concerning the reactants and products in the genetic network (9). Instead of

trying to identify one unique model parameter set, our goal in this ensemble method is to

generate a large, random sample of models, i.e., an ensemble of models, consistent with

the available RNA and protein profiling data, implemented as a Monte Carlo (MC)

simulation technique (7). In the ensemble method, a random walk is initiated in the 47-

dimensional space of model parameters, and a likelihood function Q (defined below) is

used to guide the walk into a parameter region of near-maximum Q values. The Q value

in this context is the likelihood that the genetic network model in Fig. 1 could have given

rise to the observed profiling data (3-6), calculated as a function of the model parameters

(i.e., the rate coefficients, initial concentration values of all species, and unit conversion

factors of observed species in the genetic network). We now give a more detailed, formal

description of the ensemble approach, as applied here specifically to the N. crassa

biological clock system.



Let the M-dimensional vector θ : = (θ1, .., θM) denote the unknown parameters,

comprising the natural logarithms (ln) of the rate coefficients, of the initial species

concentrations and of any unknown unit conversion factors in the model, so that, e.g., M

= 47 for the full model in Fig. 1. All species concentrations are measured and given here

in a common, but unknown “model unit” of concentration (cu) and all rate coefficients in

units of 1/(hour × cuk-1) for reactions of kth order (i.e., having k reactants). Our ensemble

of models is then formally described in terms of a probability distribution, the likelihood

function Q(θ ), on the “model space” of all “model vectors” θ . To construct such a

Q(θ ), suppose that in a series of ME experiments, labeled by e = 1,.. ME, in each

experiment the concentrations [s] of certain species s are measured at time points t, let Yl

: = ln([s](x)
t,e) for each data point labeled by l: = (t,s,e). Here, the superscript “(x)” in

[s](x)
t,e denotes that concentration is measured in some experimental or “detector units” of

concentration, such as photon or radioactive decay count units or ratio of induction units.

Next, let Y: = (Y1,…, YD) denote the D-dimensional vector of all those Yl . Likewise, let

F(θ): =  ( F1(θ ),..,FD(θ ) ) denote the corresponding predicted values for these

observables Y for a given model θ . For the above-described set of observables Y, the

predicted values F(θ ) are calculated from θ  by numerically solving the network’s

system of rate equations with the rate coefficients and initial conditions comprised by θ

and then calculating from that solution the predicted log-concentration Fl(θ ) : = ln(φs,t,e

[s]t,e) for each observed species s at each observation time point t in each experiment e.

Here, [s]t,e denotes the predicted species concentrations, given in the model unit “cu”,

and φs,t,e denotes the unknown unit conversion factor from the model unit to the various

detector units used to represent the experimental data. Subsets of experimental data

points (s,t,e) which have been measured under identical conditions in the same

experiment with the same experimental detection method share the same φ s,t,e-value; for

the experimental data sets analyzed here, only five independent, unknown φ s,t,e-

parameters are required. Experimental data points shown in Fig. 2 have been converted to

model units, i.e., are shown as ensemble averages of the decadic log, lg([s](x)
t,e / φ s,t,e ).



It is reasonable to assume (but not fundamental to our ensemble method!) that the

probability distribution P(Y) of the data are representable as a multivariate Gaussian

P(Y) ≡ P(Y; µ,Σ )  =  const x exp [-χ2/2] with

χ2(Y; µ,Σ )  = (Y-µ)T 1Σ− (Y-µ)

and µ and Σ  denote the mean and variance-covariance matrix of the observation vector

Y, with lkllk δσ 2:=Σ and an assumed standard deviation of 14.0≅lσ for all log-

concentration data points lY . A given P(Y; µ, Σ ) does of course not uniquely determine

the model ensemble Q(θ ). There is an infinite manifold of Q(θ ) which is consistent with

the data distribution P(Y), and we have to make “reasonable” choices. The simplest

choice which we have adopted here is to take P(Y; µ, Σ) as the likelihood (in which the

experimental data Y are viewed as fixed) to determine the ensemble Q(θ ). Thus the

parameters θ  are distributed according to the following likelihood:

Q(θ )  = Ω -1 P(Y; F(θ ),Σ )  = Ω -1 W(θ )

with a weight W(θ ): = P(Y;F(θ ),Σ ) and normalization factor Ω ∑=
θ

θ)(: W where

∑θ
denotes integration over all M components of θ . We restrict the allowed θm –

domain for unknown log initial concentrations and log rate coefficients to exp(θm) > 10-8

(measured in the model units stated above).

To generate a random sample of θ -points distributed according to Q(θ ), we use a

standard Metropolis algorithm (7): starting from some initial )(iniθ , we generate a

Markovian random walk (7) through θ -space. For each step of this walk, we propose a

random change to either one randomly selected θ -component (“local update”) or

simultaneously to all θ -components (“global update”). The so-proposed θ′  is then

probabilistically either accepted (i.e., the walk moves from θ  to the new θ′ ) or rejected

(i.e., the walk remains at the old θ ). The probability for acceptance (7) of proposed new



θ′ -points is designed such that the terminal distribution of θ -points visited by the

random walk after a large number of such updating steps (“equilibration”), is the desired

ensemble distribution Q(θ ) (7). Only the weight function W(θ ), but not the

normalization factor Ω, needs to be evaluated in each such a Metropolis updating step,

because only ratios of probabilities, Q(θ′ )/Q(θ ) = W(θ′ )/W(θ ) enter into the calculation

(7). However, each Metropolis step does require a completely new solution of the

reaction network kinetic rate equations to evaluate the weight W(θ′ ) for the proposed

new model θ′ . The kinetic rate equation solutions were obtained by the adaptive Runge-

Kutta method with a global error tolerance of 10-8, and verified with other higher-order

stiff methods (10).

In our actual simulation runs, we did not update all θ -components, θm, according to the

foregoing procedure. Rather, we chose the logs of unknown, independent unit conversion

factors ln(φ s,t,e) so as to maximize Q(θ ), given the M’ = 42 remaining (nonunit-

conversion-factor) θ -components. Only the remaining θ -components were subjected to

the random Metropolis updating steps described above, by using the so-maximized Q(θ )

as the terminal distribution. Because of the Gaussian dependence of the original Q(θ ) on

the log unit conversion factors, ln(φ s,t,e), this “reduced” MC procedure is mathematically

equivalent to the “full” MC procedure of subjecting all M θ -components, including all

ln(φ s,t,e), to random Metropolis updates. The corresponding “reduced” values of χ2(Y;

F(θ ),Σ ), minimized with respect to the independent ln(φ s,t,e), are what is shown in SI

Fig. 5 and Fig. 3.

For the model in Fig. 1 with n = m = 4, we first chose some set of rate coefficients and

initial concentrations to give us a (weakly damped or undamped) oscillatory solution. We

then rescaled the rate coefficients and initial concentrations and shifted the initial time

value so that the period, maximal amplitude and phase of the oscillation for the [CCG]

protein species in the model roughly matched those of the experimental [CCG] data. The

resulting model parameter vector served as the initial )(iniθ in our MC equilibration run

for the n = m = 4 model as well as other models considered in Fig. 3. We used a 1:1



random mixture of local and global updating moves, with the maximum proposed step

widths automatically adjusted after every 20th sweep (where one sweep = M Metropolis

updating steps) so as to keep the average Metropolis acceptance probability in both local

and global updating steps around 50%, e.g., between 0.34 and 0.66 for results reported in

Figs. 2 and 3. After about 4-6 × 104 equilibration MC sweeps, about 4 × 104

accumulation MC sweeps were performed, and the components of the resulting θ  at the

end of each accumulation sweep were included into our MC random sample.

In SI Fig. 5, the progress of such a MC random walk toward its “equilibrium state” is

shown. This “equilibrium” is reached when the probability for a given parameter set to be

visited equals the likelihood, Q, and, consequently, when the walk mainly explores

regions of near-maximal Q-values or, equivalently, near-minimal values of χ2. The

“model ensemble” is then the collection of models “θ ” which are visited after the

random walk has settled into its equilibrium state. Results of this walk to an equilibrium

state from different random number seeds are reported in (11).

In conventional maximum-likelihood methods one seeks to identify a unique model )(optθ

by maximization of some likelihood function Q(θ ). This is then sometimes

complemented by a sensitivity analysis, based on the local behavior of Q(θ ) in close

proximity to )(optθ , or based on an ad hoc, brute force exploration of a few wider, but

dimensionally limited parameter regions. Such an approach is justified if experimental

data are abundant, available for essentially all molecular species, and low in noise,

resulting in a Q(θ ) sharply peaked at )(optθ . By contrast, in our current situation,

experimental data are sparse, noisy and available for only a few of the many potentially

relevant molecular species. As a consequence, there may then exist vast expanses of θ -

space where Q(θ ) is maximal, or nearly so, and any unique, “optimal” choice of θ  (if

one exists, by whatever choice of likelihood!) may seriously misrepresent the information

actually contained in the data. The crucial advantage of the ensemble method is that it

systematically explores those expanses of θ -space. In doing so, it allows us to get a more

complete and systematic understanding of what can be known, inferred or predicted on

the basis of the existing data and, of equal importance, what is not known and cannot be



predicted. Thus, the method allows us to make some quite definitive, experimentally

testable model predictions for some model parameters and some observable properties,

even though many other parameters and properties may be very poorly constrained.

Furthermore, the presently most poorly constrained properties are those whose future

measurement will provide the most stringent additional constraints. Hence the ensemble

can systematically guide the design of maximally informative “new” experiments, based

on the available “old” data.

Results and Discussion

Stability analysis of genetic network. The model in Fig. 1 can be translated into a

system of 16 differential equations describing the rate of change of each of the 16 species

in the genetic network as a function of time t. The 16 species concentrations [wc-11],

[wc-1r0], [wc-1r1], [WC-1], [wc-21], [wc-2r], [WC-2], [WCC], [frq0], [frq1], [frqr1],

[FRQ], [ccg0], [ccg1], [ccgr1], and [CCG] are abbreviated here to 1u , 0ru , 1ru , pu , 1v ,

rv , pv , w , 0f , 1f , rf , pf , 0g , 1g , rg , and pg , respectively, with constant total frq-

gene concentration 10: fffG += . The reaction labels in Fig. 1 double as the rate

coefficients in the reaction network. This 16-dimensional model can be reduced to a 7-

dimensional one by several simplifications. The clock-controlled gene and its products

( 0g , 1g , rg , and pg ) can be dropped from the rate equations because their dynamics are

driven entirely by the clock genes (wc-1, wc-2, and frq) and their products, and the ccg

products do not feed back on the clock genes in Fig. 1. The WC-2 protein is in 5-fold

molar excess over FRQ and WC-1 in the nucleus (12), and hence wc-2 and its products

( 1v , rv , and pv ) can be treated approximately as constants. The total amount of each

gene, e.g., 0f + 1f  = : Gf  is constant, allowing us to eliminate 0f . Likewise, the

concentration of the unregulated wc-1 gene, 1u , is a constant (4). These simplifications

lead to a reduced model with a “dynamical vector” ),,,,,,(: 011 rrppr uuuwfff=y  obeying

the following 7 rate equations, of the general form )(yΓy =& , with the seven components

of the “reaction rate vector” )(yΓ given by the right-hand sides of the rate equations:



111 )( fAwffAf n
G −−=&

rGr fDfSffSf 31413 )( −−−=&

prp fDfLf 63 −=&

m
p

n
Gp PwffAnwffnAwDuEw −+−−−= 1182 )(&

pprp uEuDuLu 2411 −−=&

17011 rprr uDfuCu −=&

prrr fuCuDVu 010110 −−=&

Here, e.g., dtdww /≡& denotes the time derivative of w(t); == pvCE 22 : constant and

== 111 : uSV constant. The Hill coefficients n and m are, respectively, the number of WCC

molecules needed to cooperatively activate frq and ccg; and the number of FRQ

molecules needed to degrade cooperatively WCC.

To explore the long-time dynamics of our clock model, we analyze its stationary states or

“fixed points” (FP), denoted by *y , where all species’ time derivatives would vanish,

i.e., the solution(s) of the 7 coupled equations 0yΓ =*)( . We can show that the model has

at most three FPs. By linearizing the rate equations near the FP, we can find out whether

or not the FP is stable (i.e., for slight departures the system returns to the FP) (13, 14). If

all FPs of the model are unstable, then a variety of nontrivial dynamical behaviors are

possible, including oscillations. So, a necessary and sufficient condition for the model to

exhibit only sustained oscillations, regardless of initial conditions, is that all its FPs be



unstable (13). Stability or instability of a FP is governed by the “stability matrix” J, the

Jacobian of )(yΓ with matrix elements jiij yΓJ ∂∂= /:  evaluated at *y  which, for our 7-

dimensional model, has the general form:

- γ1 0  0  d1  0 0 0

1b  -γ2  0 0 0 0 0

0 2b  -γ3 0 0 0 0

1d  0 3b  -γ4 b4 0 0

0 0 0 0 -γ5 b5  0

0 0 3d  0 0 -γ6 b6

0 0 3e  0 0 0 -γ7

The nonzero J-matrix elements are given by AAwn +=1γ , γ2 = D3, γ3 = D6,

m
pG

n PfffAwnD +−+= − )( 1
12

84γ , 245 ED +=γ , γ6 = D7, pfCD 117 +=γ ,

341 SSb −= , 32 Lb = , 1
3

−−= m
pmPwfb , )(1 AAwnd n += , 0133 ruCed =−= , 24 Eb = ,

15 Lb =  , pfCb 16 =  , and )( 1
1

1 ffnAwd G
n −= − , with all concentrations set to their

respective FP values (e.g., *
pp ff = ). The sparseness and regularity of this matrix J is due

to the closed feedback loop in the genetic network in Fig. 1 and mathematically

resembles the linearized system of the synthetic oscillator known as the repressilator (15).

A FP *y  is unstable if and only if at least one of the (in general complex) eigenvalues of

J acquires a positive real part. The eigenvalues of J, denoted by λ,  are the roots of the 7th



order characteristic polynomial Φ(λ) : = det(J -λE) where E denotes the unit matrix (16).

By factorization of Φ(λ) into lower-order subpolynomials and a Routh-Hurwitz analysis

(17) of these subpolynomials, we can prove that an FP is unstable [i.e., a complex λ

exists with Φ(λ)  = 0 and Re(λ)>0 ] if and only if

0: 3214
2
1

2
3 >−+= aaaaaaR

where the na are coefficients of a 4th order subpolynomial of Φ(λ), given in terms of the

J-matrix elements by

43211 γγγγ +++=a , 11432143212 ))(( dda −++++= γγγγγγγγ ,

)()()( 3211214343213 γγγγγγγγγγ +−+++= dda , 3211321143214 γγγγγγ ddbbbda −−= .

SI Fig. 6 shows a projection of a MC-generated model ensemble into a 3D parameter

subspace. Different colors indicate whether the model FPs are all unstable (R>0, in red)

or whether at least one FP of the model is stable (R<0, in blue) according to our Routh-

Hurwitz analysis.

We can also prove that the foregoing FP instability criterion (R >0) can be satisfied if and

only if the level of cooperativity in the model exceeds a threshold given by

n m > 4 .

If the n m > 4 cooperativity condition is satisfied there will exist regions in the model’s

rate coefficient parameter space where the system can sustain undamped oscillations; if

the cooperativity condition is violated, no sustained oscillation will be found anywhere in

the model’s parameter space.
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