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Solution of the Age-Structured Model with Uniform Age Distribution. In the age-
structured model, if the initial distribution of ages is uniform, given by ni(a) = n̂i/ti, then the
stem cell population is given by

N0(t, a) =
n̂0

t0
(2a3)n for (n− 1)t0 < t− a ≤ nt0. [34]

If the cell cycle times satisfy t1/t0 = p/q, where p and q are integers, the general solution for
the semidifferentiated cells, at the points where t− a = qnt1, is given by

N1(a + qnt1, a) =
n̂1

t1
(2b3)qn

+
2a2n̂0/t0

(2a3)p − (2b3)q

(
(2a3)p−1 +

q−1∑

k=1

(2b3)q−k(2a3)bkp/qc
)

[(2a3)pn − (2b3)qn] , [35]

where b·c denotes integer part.

Relating the Age-Structured and Continuous Models. We relate the age-structured and
continuous models for the case in which all cells start with age zero, and the age-structured
solution is given by 6–8. To find the total stem, semidifferentiated and fully differentiated
cell populations at a given time in the age-structured model we integrate the age distribution
function over all possible ages. For the stem cell population, integrating 6 gives

N̂0(t) = n̂0

∫ t0

0

∞∑

n=0

δ(t− nt0 − a)(2a3)n da

= n̂0

∞∑

n=0

(2a3)n

[∫ t0

0
δ(t− nt0 − a) da

]

= n̂0(2a3)bt/t0c. [36]

The last equality follows since the only δ-function which gives a non-zero integral is that sat-
isfying nt0 < t < (n + 1)t0, which picks out the single value n = bt/t0c from the sum. If t is
much greater than t0, so that bt/t0c ≈ t/t0, we have

N̂0(t) ≈ n̂0(2a3)t/t0 . [37]

For the semidifferentiated cell population, integrating 7 gives

N̂1(t) = n̂1

∞∑

m=0

(2b3)m

[∫ t1

0
δ(t− a−mt1) da

]

+ 2a2n̂0

∞∑

n=1

∞∑

m=0

(2a3)n−1(2b3)m

[∫ t1

0
δ(t− a− nt0 −mt1) da

]
. [38]
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The integral of the first δ-function picks out the value m = bt/t1c, while that of the second
picks out the value m = bt/t1 − nt0/t1c, giving

N̂1(t) = n̂1(2b3)bt/t1c + 2a2n̂0

bt/t0c∑

n=1

(2a3)n−1(2b3)bt/t1−nt0/t1c. [39]

The sum can be evaluated exactly at the times t = rt0t1, where r, t0, and t1 are integers, giving
the approximation

N̂1(t) ≈ Â(2a3)t/t0 +
(
n̂1 − Â

)
(2b3)t/t1 , [40]

where

Â =
2a2n̂0f1

(2a3)t1 − (2b3)t0
, and f1 =

t1∑

n=1

(2a3)t1−n(2b3)b(n−1)t0/t1c. [41]

For the fully differentiated cell population, integrating 8 gives

N̂2(t) = n̂2

∞∑

p=0

(1− c)p

[∫ t2

0
δ(t− a− pt2) da

]

+ 2b2n̂1

∞∑

m=1

∞∑

p=0

(2b3)m−1(1− c)p

[∫ t2

0
δ(t− a−mt1 − pt2) da

]

+ 2a2n̂0(2b2)
∞∑

n=1

∞∑

m=1

∞∑

p=0

(2a3)n−1(2b3)m−1(1− c)p

[∫ t2

0
δ(t− a− nt0 −mt1 − pt2) da

]
. [42]

The first δ-function picks out the value p = bt/t2c, the second picks out the value p =
bt/t2 −mt1/t2c, and the third picks out the value p = bt/t2 − nt0/t2 −mt1/t2c, giving

N̂2(t) = n̂2(1− c)bt/t2c + 2b2n̂1

bt/t1c∑

m=1

(2b3)m−1(1− c)bt/t2−mt1/t2c

+ 2a2n̂0(2b2)
bt/t0−t1/t0c∑

n=1

bt/t1−nt0/t1c∑

m=1

(2a3)n−1(2b3)m−1(1− c)bt/t2−nt0/t2−mt1/t2c. [43]

Estimating t/t0 − t1/t0 ≈ t/t0 for large times in 43, and choosing t2 = t1, the resulting sums
can again be evaluated exactly at times t = rt0t1, where r, t0, and t1 are integers, giving the
approximation

N̂2(t) ≈ B̂(2a3)t/t0 + Ĉ(2b3)t/t1 + (n̂2 − B̂ − Ĉ)(1− c)t/t2 , [44]

where

B̂ =
2a2n̂0(2b2)

2b3 − (1− c)

(
f1

(2a3)t1 − (2b3)t0
− f2

(2a3)t1 − (1− c)t0

)
, Ĉ =

2b2(n̂1 − Â)
2b3 − (1− c)

, [45]

and

f2 =
t1∑

n=1

(2a3)t1−n(1− c)b(n−1)t0/t1c. [46]
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