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Solution of the Age-Structured Model with Uniform Age Distribution. In the age-
structured model, if the initial distribution of ages is uniform, given by n;(a) = n;/t;, then the
stem cell population is given by

No(t,a) = %(zag)" for (n — 1)tg <t —a < ntq. [34]
0
If the cell cycle times satisfy t1/tg = p/q, where p and ¢ are integers, the general solution for

the semidifferentiated cells, at the points where t — a = gnt, is given by
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where |-| denotes integer part.

Relating the Age-Structured and Continuous Models. We relate the age-structured and
continuous models for the case in which all cells start with age zero, and the age-structured
solution is given by 6-8. To find the total stem, semidifferentiated and fully differentiated
cell populations at a given time in the age-structured model we integrate the age distribution
function over all possible ages. For the stem cell population, integrating 6 gives
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The last equality follows since the only d-function which gives a non-zero integral is that sat-
isfying ntg < t < (n + 1)to, which picks out the single value n = |t/tp] from the sum. If ¢ is
much greater than tg, so that |t/to] ~ t/ty, we have

No(t) & fo(2az)"". [37]
For the semidifferentiated cell population, integrating 7 gives
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The integral of the first d-function picks out the value m = [t/t1], while that of the second
picks out the value m = [t/t; — nty/t1 ], giving
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The sum can be evaluated exactly at the times ¢ = rtgt1, where 7, £y, and t; are integers, giving
the approximation

N (1) ~ A(2az)""" + (7 — A) (209)", [40]
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For the fully differentiated cell population, integrating 8 gives
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The first d-function picks out the value p = |[t/ta], the second picks out the value p =
|t/ta — mit1/t2], and the third picks out the value p = [t/ty — nto/to — mty/t2], giving
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Estimating t/tg — t1/to = t/to for large times in 43, and choosing ty = t1, the resulting sums
can again be evaluated exactly at times ¢ = rtgt;, where r, tg, and ¢, are integers, giving the
approximation

Na(t) &~ B(2a3)t + C(2b3)/" + (Ry — B — C)(1 — ¢)Y*, [44]
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