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Subjects:  A total of 33 people were scanned in the fMRI study, but due to incomplete 

data, one subject had to be discarded, leaving N=32 for the scanning (18 male, 14 female; 

ages: 19-49).  SCR’s were collected on a subset of these, of which 12 had data unaffected 

by scanner artifact, so an additional 10 people (4 male, 6 female; ages: 19-37) were 

studied outside the scanner for the SCR data.  All participants gave written, informed 

consent for a protocol approved by Emory University’s IRB. 

Experimental Procedures:    Cutaneous electrical shocks were delivered using a Grass 

SD-9 stimulator (West Warwick, RI) through shielded, gold electrodes placed 2-4 cm 

apart on the dorsum of the left foot.  Each shock was a monophasic pulse of 10-20 ms 

duration.  The Grass stimulator was modified by attaching a servo-controlled motor to the 

voltage potentiometer.  The motor allowed for computer-control of the voltage level 

without comprising the safety of the electrical isolation in the stimulator.  The motor was 

controlled by a laptop through a serial interface.   

Prior to scanning, the voltage range was titrated for each participant.  The 

detection threshold was determined by delivering pulses starting at zero volts and 

increasing the voltage until the individual could feel them.  The voltage was increased 

further, while each participant was instructed, “When you feel that you absolutely cannot 

bear any stronger shock,  let us know – this will be set as your maximum;  we will not 

use this value for the experiment, but rather to establish a scale.  You will never receive a 

shock of maximum value.”  The minimum voltage ranged across individuals from 20 to 
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49 volts, and the maximum ranged from 47 to 98 volts.  Subsequent voltage levels were 

defined as a percentage of each individual’s range:  (V – Vmin)/(Vmax – Vmin)*100. 

After the voltage titration, the scanning phase began.  The software package, 

COGENT 2000 (FIL, University College London), was used for stimulus presentation 

and response acquisition.  Each trial began with a cue indicating the upcoming voltage 

level (expressed as a percent of the range) and the time, in seconds, to wait.  The cues 

stayed on the screen for the duration of the waiting period, and, to prevent conditioning to 

its offset, the cue stayed on for 1 s after the shock.  Following each trial, a visual analog 

scale (VAS) appeared, and the subject was asked to rate the preceding experience, 

including the waiting period.  Specifically, subjects were instructed, “Tell us how 

pleasant or unpleasant this waiting and shock combination was.”   Four different voltage 

levels (10%, 30%, 60%, and 90%) were presented in combination with four different 

delays (1 s, 3 s, 9 s, and 27 s).  These intervals were chosen because we hypothesized that 

the relative effects of time would follow either an exponential or hyperbolic form (S1, 2).  

All 16 combinations of voltage and delay were presented in random order, each 

combination repeated 6 times, for a total of 96 trials. 

Following the scanning phase, a series of choice pairs was presented.  Each 

choice was of the form, “30% in 27 sec  OR  60% in 9 sec.”  Although there was a total 

of 120 possible pairings, it was not possible to present all of these choices in a reasonable 

period of time.  Consequently, we selectively presented 36 choices, picked to sample the 

choices in a way that would maximize the information obtained.  For example, we 

assumed that at a given delay, subjects would always choose the lower voltage, so these 

were not presented.  At each specific voltage, however, several choices of  different 
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delays were offered.  In addition, choices were offered in which a higher voltage was 

paired with a shorter delay (we reasoned that most people would not choose a higher 

voltage at a longer delay, but we included 2 choices of this type to make sure – and none 

did).  This category is critical for determining how much more voltage and individual is 

willing to take to get a trial over with quickly.  So that there was no advantage to 

speeding up the process, the next choice pair appeared after the longest delay of the 

preceding trial.  Individuals received the actual voltage/delay chosen on each trial. 

FMRI measurements:  Scanning was conducted on a Siemens 3T Trio whole-body 

scanner.  After acquisition of a high-resolution T1-weighted scan, fMRI of the BOLD 

response was performed (TR = 2350ms, TE = 30 ms, 64X64 matrix, 35 axial slices, 3 

mm3 cubic voxels).  To prevent electrical artifacts in the fMRI signal due to shock 

deliveries, the latter occurred during a 50 ms pause after each volume, yielding an 

effective TR = 2400 ms.  Three runs of 32 trials were performed, for a total scan time of 

approximately 45 minutes. 

SCR measurements:  Skin conductance responses (SCR) were acquired with a Biopac 

MP150 digital converter (Biopac Systems, Goleta, CA) and fed into AcqKnowledge 3.7 

recording software.  A TTL-generator box was interfaced to the serial port of the 

computer running COGENT, allowing for the generation of digital timestamps for each 

stimulus on the Biopac channel recordings.  The SCR data were sampled at 125 Hz, and a 

1 Hz low-pass filter and 0.05 Hz high-pass filter were applied to the data during 

acquisition.  Due to high rates of scanner artifacts in the SCR’s, we obtained useable data 

on only 12 subjects.  Therefore, we collected SCR’s on an additional 10 subjects outside 

of the scanner, for a total of 22 subjects. 
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SCR Analysis:  The SCR data were first detrended.  Average responses were computed in 

a peristimulus window aligned to the shock.  We then used the (peak – prestimulus) 

amplitude as the measure of SCR response (Fig. S1).  The shock-SCR showed a 

monotonically increasing effect of voltage, as would be expected with the increased 

arousal associated with more voltage.  Apart from the shortest delays, in which the SCR 

contains both the cue and shock response, the effect of delay was seen to increase the 

shock-SCR.  This suggests that one effect of waiting is to increase “gain” of the 

autonomic nervous system (S3).  

 
Fig. S1.  Skin conductance response (SCR) to the shock (± s.e.m. across subjects) as a 
function of voltage and delay.  Repeated measures ANOVA confirmed that there was 
a significant effect on SCR of both voltage [F(3,63)=18.2, P<0.0001] and delay 
[F(3,63)=5.9, P<0.001].  The responses with delays of 1s and 3s are higher because 
they contain the response to both the cue and the shock, whereas the other delays are 
the response to only the shock. 

 

Construction of Utility Curves from Choices:  Because we sparsely sampled the matrix of 

possible pairings during the choice procedure, we estimated the utility curves based on a 

method derived from Laplace’s “rule of succession,” known as the Colley Matrix 
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Method, which has been used in the derivation of college football team rankings in the 

Bowl Championship Series (BCS) (S4).  We view each choice as analogous to a “match,” 

with the goal of determining for each subject the relative rankings of the 16 combinations 

of voltage and delay (“teams”).  If every possible match were played, then the rankings 

could be determined simply from the winning percentages, but since they were not, the 

rankings must be adjusted for the relative importance of each match.  Following Laplace, 

Colley uses the ratio: 
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where nw
eff is the effective number of wins, adjusted by the rankings of the teams played.  

This leads to a set of equations that must be solved simultaneously for r.   In matrix 

notation: 
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where nj,i is the number of times team i has played team j.  Solving Eq. 3 for r, by 

Cholesky decomposition yields the rankings of the 16 voltage-delay combinations. 
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Determination of Marginal Rate of Substitution (MRS):  Using the voltage-delay ranking 

derived from Eq. 3, we determined the marginal rate of substitution between volts and 

seconds.  The preference rankings can be used as a proxy for utility (U), the two of which 

are related by a monotonic transformation (but the nature of which is irrelevant for the 

calculation of MRS).  By visual inspection of the ranking curves, we see that the curves 

are approximately linear in voltage and exponential in time.  With only 4 different delays 

it was not possible to meaningfully distinguish between exponential and hyperbolic 

discounting.  Although a hyperbolic equation is commonly used to describe intertemporal 

choice (S1), the advantages over an exponential form are modest (S5), and so we opted 

for the more more easily linearized exponential form.  Because these represent ordinal 

rankings, there will always be a separation between the curves, even at long delays.  

Interestingly, the effects of voltage and time appeared additive in the sense that the 

different voltage levels didn’t converge to a single value at large delays, as would be 

expected if the effect of delay was multiplicative with voltage.  This implies that there 

may be a fixed cost to waiting, regardless of what one is waiting for.  Consequently, we 

fit a function that was linear in voltage and additive with an exponential delay term:  

cebVadVU dr ++−= −)1(),(     (5) 

where V is relative voltage, d is delay, and a, b, r, and c are constants.  The constants 

were fit to each individual’s preference curves by a mixed-model linear regression, using 

SPSS 12.0 (SPSS, Inc., Chicago, IL).  On average, this model correctly predicted 

subjects’ choices on 86.6% of the trials.   The MRS is defined by the ratio of partial 

derivatives (S6): 
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The MRS, evaluated at d = 0 s, tells us the rate at which the voltage level would need to 

be decreased to make a delayed shock as appealing as an instantaneous one. 

We used the MRS values to divide the cohort into 2 groups:  mild dreaders and 

extreme dreaders.  The higher the MRS, the more averse a person is to waiting.  Using 

the KMEANS clustering procedure in Matlab 6.5 (Mathworks, Natick, MA), the cohort 

of 32 subjects was divided into 9 extreme dreaders and 23 mild dreaders (Fig. S2). 
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Fig. S2.  Histogram of MRS values (left) and silhouette values of derived clusters 
(right).  The histogram was suggestive of a bimodal distribution and this was confirmed 
by the silhouette values, which are measures of how similar each point is to other 
members of its cluster and ranges from -1 to +1.  A silhouette value of 0 means that a 
point could belong equally well to either cluster, whereas positive values mean it 
belongs in its own cluster.  As shown, all but one point in each cluster had silhouette 
values >0.5, implying a good clustering. 

 

FMRI Analyses:  FMRI data were initially analyzed with SPM2.  Standard preprocessing 

was used, including motion correction, slice timing correction, and normalization to the 

MNI template brain in Talairach orientation.  Statistical inferences were made at the 
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second level.  Because of the different lengths of time associated with each type of trial, a 

combination of impulse functions and variable duration events was used to construct the 

1st-level design matrix (Table S1).  For example, 1 s – trials were modeled as a single 

event comprised of both the cue and shock; whereas 9 s and 27 s – trials were modeled 

with three types of events:  the cue onset, the waiting period, and the shock.  In this 

fashion, each voltage level was modeled separately.  The VAS was modeled as a variable 

duration event.  Thus, there were 37 conditions per run.  The six motion parameters were 

also included. 

 

Table S1.  Summary of how the elements of each type of trial were modeled.  Each 
element was convolved with a standard hemodynamic response function. 

Trial Type Cue Onset Waiting Period Shock 

1 s – trials Impulse 

3 s – trials Impulse None Impulse 

9 s – trials Impulse Variable Duration Impulse 

27 s – trials Impulse Variable Duration Impulse 

 

To identify regions of the putative “pain matrix,” we used a contrast of shock 

responses that increased linearly by voltage level.  This was averaged across the 3, 9, and 

27 s trials (the 1s trial was excluded from this contrast because it contained the cue) and 

thresholded at P<0.001 (k>5).  Although this type of contrast is not specific for “pain,” it 

provides for the minimum requirement that regions that code some aspect of pain should 

show a positive relationship to voltage.  ROI’s were based on this functional map for the 

following regions, which were drawn from the generally accepted definition of the 
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cortical “pain matrix” (S7-9), somatosensory areas for the foot (S10, 11), and the 

amygdala (S12):   

• SI (8 mm sphere centered at 6, -39, 57)  

• SII (8 mm sphere at 60, -30, 21)  

• insula – defined by the intersection with the corresponding PickAtlas mask and 

then subdivided into posterior (8 mm sphere at 36, -18, 15) and anterior (8 mm 

sphere at 39, 9, 3) portions 

• ACC – defined by the intersection with the PickAtlas (S13) mask for BAs 24 and 

32 and then subdivided into 3 parts:  caudal ACC (8 mm sphere at 3, -3, 42), mid 

ACC (8 mm sphere at 3, 18, 33), and rostral ACC (8 mm sphere at 3, 36, 15).   

• Amygdala – defined by the anatomical mask in the PickAtlas. 

The average beta values for the shock in the 16 voltage-delay combinations were 

extracted for these ROI’s, and a 2-factor mixed-model repeated measures ANOVA was 

performed with SPSS for the effects of voltage, delay, and group (mild dreaders vs. 

extreme dreaders; Table S2). 

Timecourses of activation were extracted from regions of interest with use of 

custom software that modifies the SPM2 design matrix stucture (Fig. S3).  Events of 

interest – in this case the cue, waiting period, and shock – were replaced with dummy 

events for a user-specified number of scans before and after the shock.  This created a 

hybrid design matrix with FIR elements surrounding the effect of interest while still 

adjusting for the other effects, including the VAS and motion parameters.  We used 

spm_get_data to load the unfiltered data from each subject and a portion of spm_regions 

to extract the 1st principal component of activation within each ROI for each subject.  The 
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1st principal component was then regressed against the aforementioned hybrid design 

matrix, and the coefficients corresponding to the dummy FIR elements were averaged 

across subjects in the two groups.  Because the 27s-trials provided the most data points 

during the waiting period, we restricted our attention to this trial type.  To improve the 

signal-to-noise ratio, we averaged the two highest voltage levels to obtain the timecourse 

estimate. 

 

Table S2.  Summary of repeated measures ANOVA on shock response in the ROI’s. 

Region 
MNI 

Coordinates 
Voltage Delay 

Group X 

Voltage 

Group X 

Delay 

R SI 6, -39, 57 P<0.0001 NS NS NS 
R SII 60, -30, 21 P<0.0001 P<0.001* NS P=0.003* 
R Post Insula 36, -18, 15 P<0.0001 NS NS NS 
R Ant Insula 39, 9, 3 P<0.0001 P=0.012 NS NS 
R Amygdala 24, 0, -21 P<0.0001 NS NS NS 
L SII -6, -39, 57 P<0.0001 P=0.039 NS NS 
L Post Insula -36, -18, 15 P<0.0001 P=0.049 NS NS 
L Ant Insula -39, 9, 3 P<0.0001 P=0.021 NS NS 
L Amygdala -21, 0, -21 P=0.001 NS NS NS 
ACC (Caudal) 3, -3, 42 P<0.0001 NS NS NS 
ACC (Mid) 3, 18, 33 P<0.0001 NS NS NS 
ACC (Rostral) 3, 36, 15 P<0.0001 P=0.048 NS NS 
* Significant after Bonferroni correction for 12 ROI’s. 
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Fig. S3.  Screenshot of graphical user interface for modifying SPM design matrix with 
user-specified FIR basis functions.  The original 1st-level design matrix is shown on the 
left.  The two red arrows denote the 60V and 90V trials of 27s duration.  These have 
been replaced with a series of delta functions in a window stradling the times of the 
original events (right).  The other effects remain unchanged, and the motion parameters 
are also included for each run.  The new model is then applied to a user-specified ROI 
and can be run in a batch mode for a user-supplied list of subjects. 
  

Model of anticipation (dread) and consumptionModel of anticipation (dread) and consumption:  We used Loewenstein’s model for the 

utility of anticipation to fit the timeseries extracted from the ROI’s (S14).  This model 

lends itself naturally to the imaging experiment.  Loewenstein suggested that the present 

value of a delayed act of consumption can be divided into two components:  the utility 

from anticipation and the utility from consumption.  The value of future consumption is 

simply the utility of consumption, U, time-discounted by an exponential function (S15).  
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Fig S4.  Theoretical framework for the utility of anticipation and consumption.  Dread 
is defined as the forward-looking integral from the present (t) to the shock at time, T.  
We assume the shock is instantaneously consumed with utility, U(V), which is a 
function of the voltage, V.  The integral is scaled by the dread factor, α.  The utility of 
future consumption is defined by the standard discounted utility model with a discount 
rate, r.  The sum of the “Dread” and “Consumption” terms yields the net present value 
of a future shock. 

In addition to this standard, discounted, utility, Loewenstein proposed that anticipation 

itself conferred some utility.  This utility was calculated as the integral of a “waiting 

function” from the present moment until the act of consumption.  In the case of aversive 

outcomes, this term captures the feeling of “dread.” 

In order to reduce the number of parameters for better fitting to the fMRI data, we 

simplified Loewenstein’s model in two respects.  First, we assumed that consumption 

was instantaneous, and we modeled consumption by a scaled delta function – a 

reasonable assumption given the fact that the shock lasted less than 20 ms.  Second, we 
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assumed that there was no discounting of anticipation, and so we modeled the utility of 

dread as the forward-looking integral of a constant.  The value of this constant is a direct 

measure of the amount of dread a person experiences.  This term is maximal at the onset 

of a trial and decreases linearly to zero as the shock approaches (Fig. S4).  Thus, a person 

who dreads waiting more than the shock itself will have the highest value at the 

beginning of a trial (for this person, the shock provides relief from waiting), whereas a 

person who doesn’t mind waiting will have the maximal value at the moment of shock.  

For the consumption term, we used standard exponential discounting with discount rate, 

r.  The sum of the anticipation (dread) and consumption terms yields the present value as 

a function of time: 
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Fitting the model to fMRI timeseries:  We performed nonlinear regression to fit the model 

described above to the ROI timeseries data.  But in order to fit the fMRI data, the model 

had to be convolved with a hemodynamic response function.  We used the gamma-variate 

function described by Buxton et al. (S16), 

ht
k

hh

et
kk

th τ

ττ
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
)!1(

1)(     (9) 

with the following parameters:  k = 3, τh = .968 s, and an additional lag = 2.5 s.  After 

convolution, an additional parameter, c, was included to account for a nonzero baseline.   
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Thus, the full model was: 
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where yi(t) was the activation of subject i at time, t; g was a dummy variable that coded 

group (mild dreader=0 and extreme dreader=1).  The parameter estimates for each subject 

represented the combination of a fixed effect, e.g. Û, and a subjectwise random error, e.g. 

ηUi.   The parameters, βU and βα represented the random effect of group on the respective 

fixed effects, U and α.    

In particular, we were interested in βα because when it is significant, this implies 

that mild and extreme dreaders have a different dread factor.  By coding mild and 

extreme dreaders as in Eq. 10, the maximum likelihood estimate of  βα represents the 

additional amount to be added to extreme dreaders’ α to account for whatever difference 

might exist between the two groups.  In other words, αmild dreader = α and  αextreme dreader = 

α+βα.  To perform the regression, we used the Matlab software package MONOLIX v 

1.1 (Modèles Non Linéaires à effets mIXtes, courtesy Marc Lavielle, Laboratoire de 

Mathématiques, Université Paris-Sud) (S17-19), which implements maximum likelihood 

estimation of nonlinear mixed-effect models and, by virtue of running in Matlab, allowed 

us to implement the convolution in Eq. 10 efficiently within a Matlab function.  Although 

we were primarily interested in the effect of group on the dread factor, we also allowed 
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group to interact with U.  This controlled for the possibility that the two groups might 

have different overall magnitudes of shock response.  Moreover, in nonlinear regression, 

the parameters may not be independent of each each other.  In our model, the discount 

rate, r, and the dread factor, α, are candidates for collinearity because an early rise in 

activity could be partially accounted for by either a small discount rate or a large dread 

factor.  To control for this possibility, we specified a covariance matrix that had nonzero 

off diagonal terms for these two parameters.  The following initial values (and variances) 

were used:  α: 0.01 (0.005), r: 0.2 (0.01), U: 0.01 (0.005), c: 0 (0.005).  A total of 700 

iterations was performed for each region with 400 of fixed step size and 300 of 

decreasing step size.  Parameter significance was estimated based on sampling the 

gaussian distribution of values near the maximum likelihood estimates (S19).  

Significance of the random effects, βU and βα, was assessed with the Wald test (Table 

S3).  As a final check, we compared the paramter estimates with those obtained by the 

LSQCURVEFIT routine in MatLab 6.5.  The latter was performed separately on the 

average timeseries for the mild and extreme dreaders for each ROI, which provided a 

qualitative assessment that MONOLIX was, in fact, providing good estimates for the 

parameters. 
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Table S3.  Model parameters fit to ROI timeseries.  Many of the ROI’s had significant 
dread factors (α), those that had significantly different dread factors for mild and extreme 
dreaders were found mainly in the posterior elements of  the pain matrix.  None of the 
regions had significant group effects on U, indicating that both groups had similar 
magnitudes of response to the shock itself.  See Fig. S5 for data and fits. 
 

Region α 
(x 10-3) 

βα 
(x 10-3) 

U 
(x 10-3) 

βU
(x 10-3) 

r 
 

c 
(x 10-3) 

R SI 4.1*** 1.1*** 7.4*** 3.0 0.195*** -0.4** 
R SII 3.2** 6.7*** 8.8*** 2.2 0.14*** -0.6*** 
R Post Insula 3.6*** 3.0*** 8.5*** 1.7 0.137*** -0.6*** 
R Ant Insula 5.6*** -0.1 14.1*** -1.3 0.837*** -0.3*** 
R Amygdala 12.0** -10.6 8.9*** 0.5 0.243*** -0.4*** 
L SII -1.3 0.6 12.5*** 3.9 0.183*** -0.4*** 
L Post Insula -12.1 3.9 4.6*** 2.0 0.076*** -0.3*** 
L Ant Insula -0.9 1.2*** 10.8** 1.3 0.749*** -0.3 
L Amygdala -4.6 6.9 9.5*** -5.3 0.0933*** -0.1 
ACC (Caudal) 2.5 4.3*** 10.5*** 0.6 0.120*** -0.4** 
ACC (Mid) 9.5* -10.1 9.1*** 0.6 0.337*** -0.2*** 
ACC (Rostral) 69.8*** -82.9*** -0.9* -0.1 0.117*** 0.3*** 
*P≤0.05 **P≤0.01 ***P≤0.001  

16 



Berns et al.:  Neurobiologic Substrates of Dread 

 

 

Fig. S5.  Timecourses for extreme dreaders (red) and mild dreaders (blue) in other ROI’s.  
Average of 60V and 90V for 27s-trials only.  Dashed lines are derived from model fit 
(Eq. 10) and dotted lines are for only the dread term in Eq. 10. 
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Alternative Models:  The aforementioned model, while derived from utility theory, is not 

unique in that alternative, simpler, models could be fit in the same fashion.  For example, 

one model might not have the dread factor at all: 
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and where the discount rate, r, is allowed to take on different values between the groups.  

Using MONOLIX, we compared this model against that in Eq. 10 for the caudal ACC 

and right SII ROI’s.  The log-likelihood ratio test indicated that the model with the dread 

factor fit the data better (P=0.045 and P=0.008, respectively; see Fig. S6). 
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Fig. S6.  Fit of alternative models in R SII for extreme dreaders (left) and mild dreaders (right).  
Solid lines are average data for the two groups.  Dashed lines are for the full model (Eq. 10) and 
dotted lines are for the model without the dread term (Eq. 11).  
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