SUPPLEMENTARY MATERIALS

Supplementary text

Alternative modeling equations

Most biological processes are inherently non-linear. The Michaelis-Menten rate representation (3, 4) is one of several ways to describe such nonlinearities. We considered the following other representations:

First, reactions *V2* and *V3* can be rewritten in the form including the basal, receptor- and GAP-independent rates of trimeric complex dissociation and GTP hydrolysis, respectively:

$$V2 = k_2^0 n_1 + k_2 \frac{n_1}{K_2 + n_1}$$

$$V3 = k_3^0 n_3 + k_3 \frac{n_3}{K_3 + n_3}$$
(1),

where k_2^0 and k_3^0 are the basal dissociation and hydrolysis rate constants, respectively. As these constants are very low (ca. 0.005 sec⁻¹ and 0.05 sec⁻¹, respectively [1], 100-1000 fold lower than k_2 and k_3), exclusion of the basal components of V2 and V3 does not affect modeling presented in the Results.

Second, the Michaelis-Menten rate equation has been developed for situations where the substrate concentration strongly exceeds the enzyme concentration. When this condition is not maintained, the generalized rate equation can be used [2], and V2 and V3 will adopt the following form:

$$V2 = \frac{k_{diss}}{2} \left((K_2 + [Rc^*] + n_1) - \sqrt{(K_2 + [Rc^*] + n_1)^2 - 4[Rc^*]n_1} \right)$$

$$V3 = \frac{k_{hydr}}{2} \left((K_3 + [GAP] + n_3) - \sqrt{(K_3 + [GAP] + n_3)^2 - 4[GAP]n_3} \right)$$
(2)

Third, the three reactions (2-4) of the trimeric G protein cycle can also be expressed in terms of the power-law representation:

$$\begin{cases} V1 = \alpha 1 \cdot n_4^{g_1} \cdot n_2^{g_2}; \\ V2 = \beta 2 \cdot n_1^{h_1} \cdot [Rc^*]^{h_2}; \\ V3 = \beta 3 \cdot n_3^{h_3} \cdot [GAP]^{h_4} \end{cases}$$
(3),

where $\alpha 1$, $\beta 2$, and $\beta 3$ are rate constants, and g 1, g 2, h 1, h 2, h 3, and h 4 are kinetic orders [3]. Mass conservation (5a-5b) has to be applied to obtain the system of two independent differential equations:

$$\begin{cases} \frac{d[\beta\gamma]}{dt} = \frac{dn_2}{dt} = \beta 2 \cdot (M - n_2)^{h_1} \cdot [Rc^*]^{h_2} - \alpha 1 \cdot (n_2 - n_3)^{g_1} \cdot n_2^{g_2}; \\ \frac{d[G\alpha^{GTP}]}{dt} = \frac{dn_3}{dt} = \beta 2 \cdot (M - n_2)^{h_1} \cdot [Rc^*]^{h_2} - \beta 3 \cdot n_3^{h_3} \cdot [GAP]^{h_4} \end{cases}$$
(4).

The feedback loops (15-16) in the trimeric G protein cycle can also be successfully modeled using the power-law representation, such as

$$\begin{cases} V2 = \beta 2 \cdot n_1^{h_1} \cdot [Rc^*]^{h_2} \cdot n_3^{h_6}; \\ \frac{d[Rc^*]}{dt} = V_{del} - \beta 4 \cdot [Rc^*]^{h_5} \cdot n_3^{h_7} \end{cases}$$
(5).

Such power-law representations have been widely used in metabolic modeling, and can be useful for non-ideal kinetics [4], as well as to incorporate additional regulations, as the Michaelis-Menten representation becomes cumbersome for complicated pathways [3].

It is important to note that all above-mentioned forms of modeling the trimeric G protein cycle have reproduced the diversity in behavior of the system reported in this work.

Supplementary Table 1: Cell volumes

Cell/organism	volume	reference
human platelet	10 fl	http://www.fpnotebook.com/HEM109.htm
S. cerevisiae(haploid)	30 fl	[5]
human erythrocyte	100 fl	http://web2.iadfw.net/uthman/blood_cells.html
human neutrophil	300 fl	[6]
human lymphocyte	400 fl	
Dictyostelium amoeba	500 fl	[7]
S49 lymphoma cell line/mouse	800 fl	[8]
human peritoneal fibroblast	2200 fl	http://www.pdiconnect.com/archive.php?op=read&mode=full&entryid=645
human ventricular myocyte	25 pl	[9]

molecule	cell type	organism	molecules/cell	ref	cellular
1.0000					concentration
1. GPCR receptors			10.5.000	5103	
prostaglandin E2 receptor	T cells	human	435±322	[10]	2 nM
-after stimulation			1035±357		5 nM
β -adrenergic receptor	S49 lymphoma	mouse	1220±67	[11]	3 nM
bradykinin receptor	Rat-1 fibroblasts, ras-1 ransformed	rat	8350±160	[12]	6 nM
β-adrenergic receptor	myocyte	rat	2.1×10^{5}	[13]	13 nM
PAF receptor	platelets	human	281±63	[14, 15]	50 nM
		pig	281±158		50 nM
		rabbit	689±229		115 nM
cAMP receptor	amoeba	D.discoideum	40,000	[7]	130 nM
fMLP receptor	HL60 cells	human	50,000	[16]	250 nM
Ste2 (pheromone receptor)	yeast	S.cerevisiae	8000	[17]	460 nM
Rhodopsin	rod outer segments	human		[18]	3 mM
2. G proteins					
Gpa1	yeast	S.cerevisiae	8000	[19]	460 nM
-after stimulation			12000		690 nM
pertussis toxin-sensitive Ga	HL60 cells	human	130000	[16]	650 nM
Gs	S49 lymphoma	mouse	130000	[20]	270 nM
Gs	myocyte	rat	4.7×10^7	[13]	3 μM
transducin	rod outer segments	human		[18]	300 µM
3. RGS					
RGS2L	NG108-15 neuroblastoma	rat		[21]	10-100 nM
Sst2	yeast	S.cerevisiae	2000	[19]	115 nM
-after stimulation			5000		290 nM

Supplementary Table2. Amounts of GPCR/trimeric G protein/RGS molecules per cell

molecules	organism/source	kass	ref	method
α_i^{myr} + bovine brain $\beta\gamma$	rat (bacterial production), bovine	$0.7 * 10^{6} \text{ M}^{-1} \text{ sec}^{-1}$	[22]	flow cytometry
α_i + bovine brain $\beta\gamma$	bovine brain	$4 * 10^4 \text{ M}^{-1} \text{ sec}^{-1}$	[23]	surface plasmon
				resonance spectroscopy
$\alpha_{i2} + \beta_1 \gamma_1$	human (baculovirus production)	$4.4 * 10^4 \text{ M}^{-1} \text{ sec}^{-1}$	[24]	optical biosensor
$\alpha_{i2} + \beta_1 \gamma_2$	human (baculovirus production)	$3.4 * 10^4 \text{ M}^{-1} \text{ sec}^{-1}$	[24]	optical biosensor
		K _d		
α_i^{myr} + bovine brain $\beta\gamma$	rat (bacterial production), bovine	3 nM	[22]	
α_{i1}^{myr} , bovine brain $\beta\gamma$	rat (bacterial production), bovine	0.2 nM	[25]	
α_{o}^{myr} + bovine brain $\beta\gamma$	rat (bacterial production), bovine	17 nM	[25]	
$\alpha_{\rm s}$ + bovine brain $\beta\gamma$	rat (bacterial production), bovine	27 nM	[25]	
α_{41} / α_{39} + biotinyl $\beta\gamma$	bovine brain	20 nM / 350 nM	[26]	
FITC- α_0 + rhodamine-βγ	bovine brain	10 nM	[27]	steady-state FRET
α ₃₉	bovine brain	100 nM	[28]	pertussis toxin assay
$\alpha_{\rm s} / \alpha_{\rm o} + \beta_1 \gamma_1$	rabbit liver, bovine brain, bovine (baculovirus	2 nM	[29]	
	production)			
$\alpha_{\rm s} / \alpha_{\rm o}$ + other $\beta \gamma$	rabbit liver, bovine brain, bovine (baculovirus	0.2 - 0.5 nM	[29]	
	production)			
α_{i2}^{myr} + any $\beta\gamma$	bovine (bacterial and baculovirus production)	0.4 nM	[29]	
$\alpha_{i2}^{myr} + \beta_1 \gamma_1$	bovine (bacterial and baculovirus production)	85 nM	[24]	
$\alpha_{i2}^{myr} + \beta_1 \gamma_2$	bovine (bacterial and baculovirus production)	134 nM	[24]	

Supplementary Table 3. Data for $G\alpha^{GDP} + \beta\gamma$ association.

molecules	organism, source	<i>k</i> _{diss}	ref
Gs + β -adrenergic receptor	rabbit hepatocytes/ turkey erythrocytes	$1-5 \text{ sec}^{-1}$	[1, 30]
Gq + muscarinic cholinergic	mouse/human (baculovirus production)	1.8 sec^{-1}	[31]
(m1AChR) receptor			
Gi + α_{2a} AR adrenoreceptor	hamster/porcine	5 sec^{-1}	[32]
Gi + muscarinic receptor (M2	baculovirus production	0.34 sec^{-1}	[33]
mAChR)			
Gt + rhodopsin	bovine	286 sec^{-1}	[34]
Gt + rhodopsin	frog	120 sec^{-1}	[35, 36]
Golf + olfaction receptor	rat, olfactory cilia	at least 20 sec ⁻¹	[35, 36]
Gq + rhodopsin	drosophila	at least 20 sec ⁻¹	[36, 37]

Supplementary Table 4. Data for GPCR-driven dissociation of the trimeric G proteins.

Supplementary Table 5. Data for GAP-driven GTPase.

molecules	K _M	reference	notes
Gz + RGSZ1	2 nM	[38]	
Gz + RGSZ1	15 nM	[39]	5°C
	k _{hydr}		
Gq + PLC-β1	9-12 sec^{-1}	[31]	
Gq + RGS4	$22-27 \text{ sec}^{-1}$	[31]	
Gz + RGSZ1/GAIP	40 min^{-1}	[38]	
Gt-RGS4	2.8 sec^{-1}	[40]	
Go-RGS4	2 sec^{-1}	[41]	8°C

SUPPLEMENTARY MATERIALS REFERENCES

- 1 Gilman, A. G. (1987) G proteins: transducers of receptor-generated signals. Annu. Rev. Biochem. 56, 615-649
- 2 Segel, I. H. (1975) Enzyme Kinetics. Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems. John Wiley & Sons, Inc., New York
- 3 Voit, E. O. (2000) Computational Analysis of Biochemical Systems. A Practical Guide for Biochemists and Molecular Biologists. Cambridge University Press, Cambridge
- 4 Savageau, M. A. (1976) Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology. Addison-Wesley, Reading, MA
- 5 (1997) Yeast. In McGraw-Hill Encyclopedia of Science and Technology, McGraw-Hill Professional, Pennsylvania
- 6 Worthen, G. S., Schwab, B., 3rd, Elson, E. L. and Downey, G. P. (1989) Mechanics of stimulated neutrophils: cell stiffening induces retention in capillaries. Science **245**, 183-186
- 7 Mato, J. M., Losada, A., Nanjundiah, V. and Konijn, T. M. (1975) Signal input for a chemotactic response in the cellular slime mold Dictyostelium discoideum. Proc. Natl. Acad. Sci. U. S. A. **72**, 4991-4993
- 8 Watson, P. A. (1989) Accumulation of cAMP and calcium in S49 mouse lymphoma cells following hyposmotic swelling. J. Biol. Chem. **264**, 14735-14740
- 9 Jafri, M. S., Rice, J. J. and Winslow, R. L. (1998) Cardiac Ca2+ dynamics: the roles of ryanodine receptor adaptation and sarcoplasmic reticulum load. Biophys. J. **74**, 1149-1168
- 10 Holter, W., Spiegel, A. M., Howard, B. H., Weber, S. and Brann, M. R. (1991) Expression of GTP-binding proteins and prostaglandin E2 receptors during human T cell activation. Cell. Immunol. **134**, 287-295
- 11 Insel, P. A., Mahan, L. C., Motulsky, H. J., Stoolman, L. M. and Koachman, A. M. (1983) Time-dependent decreases in binding affinity of agonists for beta-adrenergic receptors of intact S49 lymphoma cells. A mechanism of desensitization. J. Biol. Chem. 258, 13597-13605
- 12 Downward, J., de Gunzburg, J., Riehl, R. and Weinberg, R. A. (1988) p21ras-induced responsiveness of phosphatidylinositol turnover to bradykinin is a receptor number effect. Proc. Natl. Acad. Sci. U. S. A. **85**, 5774-5778
- Post, S. R., Hilal-Dandan, R., Urasawa, K., Brunton, L. L. and Insel, P. A. (1995) Quantification of signalling components and amplification in the beta-adrenergic-receptor-adenylate cyclase pathway in isolated adult rat ventricular myocytes. Biochem. J. 311 (Pt 1), 75-80
- Lopez Diez, F., Nieto, M. L., Fernandez-Gallardo, S., Gijon, M. A. and Sanchez Crespo, M. (1989) Occupancy of platelet receptors for platelet-activating factor in patients with septicemia. J. Clin. Invest. **83**, 1733-1740
- 15 Duronio, V., Reany, A., Wong, S., Bigras, C. and Salari, H. (1990) Characterization of platelet-activating factor receptors in porcine platelets. Can. J. Physiol. Pharmacol. **68**, 1514-1519

- 16 Wieland, T., Liedel, K., Kaldenberg-Stasch, S., Meyer zu Heringdorf, D., Schmidt, M. and Jakobs, K. H. (1995) Analysis of receptor-G protein interactions in permeabilized cells. Naunyn Schmiedebergs Arch. Pharmacol. **351**, 329-336
- 17 Jenness, D. D., Burkholder, A. C. and Hartwell, L. H. (1986) Binding of alpha-factor pheromone to Saccharomyces cerevisiae a cells: dissociation constant and number of binding sites. Mol. Cell. Biol. **6**, 318-320
- 18 Stryer, L. and Bourne, H. R. (1986) G proteins: a family of signal transducers. Annu. Rev. Cell. Biol. 2, 391-419
- 19 Hao, N., Yildirim, N., Wang, Y., Elston, T. C. and Dohlman, H. G. (2003) Regulators of G protein signaling and transient activation of signaling: experimental and computational analysis reveals negative and positive feedback controls on G protein activity. J. Biol. Chem. **278**, 46506-46515
- 20 Ransnas, L. A. and Insel, P. A. (1988) Quantitation of the guanine nucleotide binding regulatory protein Gs in S49 cell membranes using antipeptide antibodies to alpha s. J. Biol. Chem. **263**, 9482-9485
- 21 Tosetti, P., Parente, V., Taglietti, V., Dunlap, K. and Toselli, M. (2003) Chick RGS2L demonstrates concentration-dependent selectivity for pertussis toxin-sensitive and -insensitive pathways that inhibit L-type Ca2+ channels. J. Physiol. **549**, 157-169
- 22 Sarvazyan, N. A., Remmers, A. E. and Neubig, R. R. (1998) Determinants of gi1alpha and beta gamma binding. Measuring high affinity interactions in a lipid environment using flow cytometry. J. Biol. Chem. **273**, 7934-7940
- 23 Rebois, R. V., Schuck, P. and Northup, J. K. (2002) Elucidating kinetic and thermodynamic constants for interaction of G protein subunits and receptors by surface plasmon resonance spectroscopy. Methods Enzymol. **344**, 15-42
- Figler, R. A., Lindorfer, M. A., Graber, S. G., Garrison, J. C. and Linden, J. (1997) Reconstitution of bovine A1 adenosine receptors and G proteins in phospholipid vesicles: betagamma-subunit composition influences guanine nucleotide exchange and agonist binding. Biochemistry **36**, 16288-16299
- 25 Sarvazyan, N. A., Lim, W. K. and Neubig, R. R. (2002) Fluorescence analysis of receptor-G protein interactions in cell membranes. Biochemistry **41**, 12858-12867
- 26 Kohnken, R. E. and Hildebrandt, J. D. (1989) G protein subunit interactions. Studies with biotinylated G protein subunits. J. Biol. Chem. **264**, 20688-20696
- 27 Heithier, H., Frohlich, M., Dees, C., Baumann, M., Haring, M., Gierschik, P., Schiltz, E., Vaz, W. L., Hekman, M. and Helmreich, E. J. (1992) Subunit interactions of GTP-binding proteins. Eur. J. Biochem. **204**, 1169-1181
- 28 Huff, R. M., Axton, J. M. and Neer, E. J. (1985) Physical and immunological characterization of a guanine nucleotide-binding protein purified from bovine cerebral cortex. J. Biol. Chem. **260**, 10864-10871
- 29 Ueda, N., Iniguez-Lluhi, J. A., Lee, E., Smrcka, A. V., Robishaw, J. D. and Gilman, A. G. (1994) G protein beta gamma subunits. Simplified purification and properties of novel isoforms. J. Biol. Chem. **269**, 4388-4395
- 30 Pedersen, S. E. and Ross, E. M. (1982) Functional reconstitution of beta-adrenergic receptors and the stimulatory GTP-binding protein of adenylate cyclase. Proc. Natl. Acad. Sci. U. S. A. **79**, 7228-7232

- 31 Mukhopadhyay, S. and Ross, E. M. (1999) Rapid GTP binding and hydrolysis by G(q) promoted by receptor and GTPaseactivating proteins. Proc. Natl. Acad. Sci. U. S. A. **96**, 9539-9544
- 32 Zhong, H., Wade, S. M., Woolf, P. J., Linderman, J. J., Traynor, J. R. and Neubig, R. R. (2003) A spatial focusing model for G protein signals. Regulator of G protein signaling (RGS) protien-mediated kinetic scaffolding. J. Biol. Chem. **278**, 7278-7284
- 33 Mosser, V. A., Amana, I. J. and Schimerlik, M. I. (2002) Kinetic analysis of M2 muscarinic receptor activation of Gi in Sf9 insect cell membranes. J. Biol. Chem. **277**, 922-931
- 34 Chabre, M. (1993) In The GTPase Superfamily (Marsh, J. and Goode, J., eds.), pp. 112-124, Ciba Foundation Symposium S.
- 35 Breer, H., Boekhoff, I. and Tareilus, E. (1990) Rapid kinetics of second messenger formation in olfactory transduction. Nature **345**, 65-68
- 36 Leskov, I. B., Klenchin, V. A., Handy, J. W., Whitlock, G. G., Govardovskii, V. I., Bownds, M. D., Lamb, T. D., Pugh, E. N., Jr. and Arshavsky, V. Y. (2000) The gain of rod phototransduction: reconciliation of biochemical and electrophysiological measurements. Neuron 27, 525-537
- 37 Wu, C. F. and Pak, W. L. (1978) Light-induced voltage noise in the photoreceptor of Drosophila melanogaster. J. Gen. Physiol. **71**, 249-268
- 38 Wang, J., Ducret, A., Tu, Y., Kozasa, T., Aebersold, R. and Ross, E. M. (1998) RGSZ1, a Gz-selective RGS protein in brain. Structure, membrane association, regulation by Galphaz phosphorylation, and relationship to a Gz gtpase-activating protein subfamily. J. Biol. Chem. **273**, 26014-26025
- ³⁹ Tang, W., Tu, Y., Nayak, S. K., Woodson, J., Jehl, M. and Ross, E. M. (2006) Gbetagamma inhibits Galpha GTPase-activating proteins by inhibition of Galpha-GTP binding during stimulation by receptor. J. Biol. Chem. **281**, 4746-4753
- 40 Nekrasova, E. R., Berman, D. M., Rustandi, R. R., Hamm, H. E., Gilman, A. G. and Arshavsky, V. Y. (1997) Activation of transducin guanosine triphosphatase by two proteins of the RGS family. Biochemistry **36**, 7638-7643
- 41 Posner, B. A., Mukhopadhyay, S., Tesmer, J. J., Gilman, A. G. and Ross, E. M. (1999) Modulation of the affinity and selectivity of RGS protein interaction with G alpha subunits by a conserved asparagine/serine residue. Biochemistry **38**, 7773-7779