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Supplementary text 

Alternative modeling equations 

 Most biological processes are inherently non-linear. The Michaelis-Menten rate representation (3, 4) is one of several ways to 

describe such nonlinearities. We considered the following other representations:  

 First, reactions V2 and V3 can be rewritten in the form including the basal, receptor- and GAP-independent rates of trimeric 

complex dissociation and GTP hydrolysis, respectively: 
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where 0

2k  and 0

3k  are the basal dissociation and hydrolysis rate constants, respectively. As these constants are very low (ca. 0.005 sec
-1

 

and 0.05 sec
-1

, respectively [1], 100-1000 fold lower than k2 and k3), exclusion of the basal components of V2 and V3 does not affect 

modeling presented in the Results. 

 Second, the Michaelis-Menten rate equation has been developed for situations where the substrate concentration strongly 

exceeds the enzyme concentration. When this condition is not maintained, the generalized rate equation can be used [2], and V2 and 

V3 will adopt the following form: 
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 Third, the three reactions (2-4) of the trimeric G protein cycle can also be expressed in terms of the power-law representation: 
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where α1, β2, and β3 are rate constants, and g1, g2, h1, h2, h3, and h4 are kinetic orders [3]. Mass conservation (5a-5b) has to be 

applied to obtain the system of two independent differential equations: 
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  (4). 

 The feedback loops (15-16) in the trimeric G protein cycle can also be successfully modeled using the power-law 

representation, such as  
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Such power-law representations have been widely used in metabolic modeling, and can be useful for non-ideal kinetics [4], as well as 

to incorporate additional regulations, as the Michaelis-Menten representation becomes cumbersome for complicated pathways [3].  



 It is important to note that all above-mentioned forms of modeling the trimeric G protein cycle have reproduced the diversity in 

behavior of the system reported in this work. 

 

 

Supplementary Table 1: Cell volumes 

Cell/organism volume reference 

human platelet 10 fl http://www.fpnotebook.com/HEM109.htm 

S. cerevisiae(haploid) 30 fl [5] 

human erythrocyte 100 fl http://web2.iadfw.net/uthman/blood_cells.html 

human neutrophil 300 fl [6] 

human lymphocyte 400 fl  

Dictyostelium amoeba 500 fl [7] 

S49 lymphoma cell line/mouse 800 fl [8] 

human peritoneal fibroblast 2200 fl http://www.pdiconnect.com/archive.php?op=read&mode=full&entryid=645 

human ventricular myocyte 25 pl [9] 
 

 



Supplementary Table2. Amounts of GPCR/trimeric G protein/RGS molecules per cell 

molecule cell type organism molecules/cell ref cellular 

concentration 

1. GPCR receptors      

prostaglandin E2 receptor 

                  -after stimulation 

T cells human 435±322 

1035±357 

[10] 2 nM 

5 nM 

β-adrenergic receptor S49 lymphoma mouse 1220±67 [11] 3 nM 

bradykinin receptor Rat-1 fibroblasts, ras-1 ransformed rat 8350±160 [12] 6 nM 

ß-adrenergic receptor myocyte rat 2.1 x 10
5
 [13] 13 nM 

PAF receptor 

              

platelets human 

pig 

rabbit 

281±63 

281±158 

689±229 

[14, 15] 50 nM 

50 nM 

115 nM 

cAMP receptor amoeba D.discoideum 40,000 [7] 130 nM 

fMLP receptor HL60 cells human 50,000 [16] 250 nM 

Ste2 (pheromone receptor) yeast S.cerevisiae 8000 [17] 460 nM 

Rhodopsin rod outer segments human  [18] 3 mM 

      

2. G proteins      

Gpa1 

         -after stimulation 

yeast  S.cerevisiae 8000 

12000 

[19] 460 nM 

690 nM 

pertussis toxin-sensitive Gα  HL60 cells human 130000 [16] 650 nM 

Gs S49 lymphoma mouse 130000 [20] 270 nM 

Gs myocyte rat 4.7 x 10
7
 [13] 3 µM 

transducin rod outer segments human  [18] 300 µM 

      

3. RGS      

RGS2L NG108-15 neuroblastoma rat  [21] 10-100 nM 

Sst2 

            -after stimulation 

yeast S.cerevisiae 2000 

5000 

[19] 115 nM 

290 nM 



Supplementary Table 3. Data for GααααGDP
 + βγβγβγβγ association. 

molecules organism/source kass ref method 

αi
myr

 + bovine brain βγ rat (bacterial production), bovine 0.7 * 10
6
 M

-1
 sec

-1
 [22] flow cytometry 

αi + bovine brain βγ bovine brain 4 * 10
4
 M

-1
 sec

-1
 [23] surface plasmon 

resonance spectroscopy 

αi2 + β1γ1 human (baculovirus production) 4.4 * 10
4
 M

-1
 sec

-1
 [24] optical biosensor 

αi2 + β1γ2 human (baculovirus production) 3.4 * 10
4
 M

-1
 sec

-1
 [24] optical biosensor 

     

  Kd   

αi
myr

 + bovine brain βγ rat (bacterial production), bovine 3 nM [22]  

αi1
myr

, bovine brain βγ rat (bacterial production), bovine 0.2 nM [25]  

αo
myr

 + bovine brain βγ rat (bacterial production), bovine 17 nM [25]  

αs + bovine brain βγ rat (bacterial production), bovine 27 nM [25]  

α41 / α39 + biotinyl βγ bovine brain 20 nM / 350 nM [26]  

FITC-αo + rhodamine-βγ bovine brain 10 nM [27] steady-state FRET 

α39 bovine brain 100 nM [28] pertussis toxin assay 

αs / αo + β1γ1 rabbit liver, bovine brain, bovine (baculovirus 

production) 

2 nM [29]  

αs / αo + other βγ rabbit liver, bovine brain, bovine (baculovirus 

production) 

0.2 - 0.5 nM [29]  

αi2
myr

 + any βγ bovine (bacterial and baculovirus production) 0.4 nM [29]  

αi2
 myr

 + β1γ1 bovine (bacterial and baculovirus production) 85 nM [24]  

αi2
 myr

 + β1γ2 bovine (bacterial and baculovirus production) 134 nM [24]  

 

 

 

 



Supplementary Table 4. Data for GPCR-driven dissociation of the trimeric G proteins. 

molecules organism, source kdiss ref 

Gs + β-adrenergic receptor rabbit hepatocytes/ turkey erythrocytes 1-5 sec
-1

 [1, 30] 

Gq + muscarinic cholinergic 

(m1AChR) receptor 

mouse/human (baculovirus production) 1.8 sec
-1

 [31] 

Gi + α2aAR adrenoreceptor hamster/porcine 5 sec
-1

 [32] 

Gi + muscarinic receptor (M2 

mAChR) 

baculovirus production 0.34 sec
-1

 [33] 

Gt + rhodopsin bovine 286 sec
-1

 [34] 

Gt + rhodopsin frog 120 sec
-1

 [35, 36] 

Golf  + olfaction receptor rat, olfactory cilia at least 20 sec
-1

 [35, 36] 

Gq + rhodopsin drosophila at least 20 sec
-1

 [36, 37] 

 

Supplementary Table 5. Data for GAP-driven GTPase. 

molecules KM reference notes 

Gz + RGSZ1 2 nM [38]  

Gz + RGSZ1 15 nM [39] 5°C 

    

 khydr   

Gq + PLC-β1 9-12 sec
-1

 [31]  

Gq + RGS4 22-27 sec
-1

 [31]  

Gz + RGSZ1/GAIP 40 min
-1

 [38]  

Gt-RGS4 2.8 sec
-1

 [40]  

Go-RGS4 2 sec
-1

 [41] 8°C 
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