
Additional file 1: Methods

Proof of Propositions 1 and 2

Consider a circle with circumference of length 1. Place n particles X1, . . . , Xn

uniformly and independently at random on the circle. Choose one of the
particles and label it Xn,1. We may imagine that the circle is cut at this
point, and opened out into a line segment of length 1. We then label one
end of the line segment as the point 0, and the other end as the point 1. Let
Xn,2, . . . , Xn,n denote the positions on the line segment of the remaining n−1
particles, arranged in increasing order: 0 = Xn,1 ≤ Xn,2 ≤ · · · ≤ Xn,n ≤ 1.
Let Lk be the distances between neighbouring points,

Lk =
{

Xn,k+1 −Xn,k if 1 ≤ k ≤ n− 1
1−Xn,n if k = n.

This is illustrated in Figure 2.
We wish to approximate the probability that Lk ≤ sk for all except w of

the k’s, where the s1, . . . , sn are given real numbers between 0 and 1: that
is,

P[W (s1, . . . , sn) ≤ w]

where W (t1, . . . , tn) =
∑n

k=1 χk(tk) and the function χi(s) takes the value
1 if Li > s and 0 otherwise. We will apply the Chen-Stein method, which
provides an approximation provided we can calculate the first two moments
of W and establish certain properties of the χi.

Theorem 1 (from Lindvall, 2002) Let {Yi}n
i=1 be Bernoulli random vari-

ables on a probability space (Ω,F , P), and let W =
∑n

i=1 Yi. For each
1 ≤ k ≤ n let Uk and Vk be random variables with Uk =d W , and 1 + Vk

having distribution
P[W ∈ ·|Yk = 1]

(=d denotes equality in distribution). Then

sup
A⊆Z+

|P[W ∈ A]− pE[W ][A]| ≤ (1 ∧ E[W ]−1)
n∑

k=1

P[Yk = 1]E[|Uk − Vk|],
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Figure 2: Arc and particle positions on the circle.

where pλ represents the Poisson distribution with parameter λ. In particular
when Uk ≥ Vk for all k we have

sup
A⊆Z+

|P[W ∈ A]− pE[W ][A]| ≤ (1 ∧ E[W ]−1)(E[W ]−Var[W ]) (1)

where Var[W ] is the variance of W .

We first verify the conditions of Theorem 1. For each i set Yi = χi(si),
and for each k put Uk = W and Vk =

∑
i6=k χi(si/(1−sk)). Clearly Uk ≥ Vk

for all k; to see that the distributions P[1 + Vk ∈ ·] and P[W ∈ ·|Yk = 1] are
equal, we have

P[W = m|χk(sk) = 1] =
P
[∑

i6=k χi(si) = m− 1, χk(sk) = 1
]

P[χk(sk) = 1]
.

The event in the numerator can only occur if both χk(sk) = 1 and there exist
i1 < . . . < im−1 ∈ {1, . . . , n} \ {k} such that χij (sij ) = 1 for 1 ≤ j ≤ m− 1,
and χl(sl) = 0 otherwise. Applying the definition of χi we have

P[W = m|χk(sk) = 1] (2)

=
∑

i1<...<im−1∈
{1,...,n}\{k}

P[Li1 > si1 , . . . , Lim−1 > sim−1 , Lk > sk, Ll ≤ sl otherwise]
P[Lk > sk]

Now

P[1 + Vk = m] = P

∑
i6=k

χi

(
si

1− sk

)
= m− 1
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and similarly the above event can only occur if there exist i1 < . . . < im−1 ∈
{1, . . . , n} \ {k} with χij (sij/(1− sk)) = 1 for 1 ≤ j ≤ m− 1 and χl(sl/(1−
sk)) = 0 otherwise:

P[1 + Vk = m] =
∑

i1<...<im−1∈
{1,...,n}\{k}

P
[
Li1 >

si1

1− sk
, . . . , Lim−1 >

sim−1

1− sk
,

Lk ∈ R, Ll ≤
sl

1− sk
otherwise

]
(3)

The equality of P[W = m|Yk = 1] and P[1 + Vk = m] then follows by
applying the inclusion-exclusion formula, Lemma 1 to equations (2) and (3)
as follows.

P
[
Li1 >

si1

1− sk
, . . . , Lim−1 >

sim−1

1− sk
, Lk ∈ R, Ll ≤

sl

1− sk
otherwise

]
=

n−m∑
j=1

∑
a1<···<aj

(−1)jP
[
Ll >

sl

1− sk
for l = i1, . . . , im−1, a1, . . . , aj

]

=
n−m∑
j=1

∑
a1<···<aj

(−1)j

(
1−

(∑m−1
l=1 sil +

∑j
l=1 sal

1− sk

))n−1

+

=
n−m∑
j=1

∑
a1<···<aj

(−1)j (1− sk −
∑m−1

l=1 sil −
∑j

l=1 sal
)n−1
+

(1− sk)n−1

=
n−m∑
j=1

∑
a1<···<aj

(−1)j P[Ll > sl for l = i1, . . . , im−1, k, a1, . . . , aj ]
P[Lk > s]

=
P[Li1 > si1 , . . . , Lim−1 > sim−1 , Lk > sk, Ll ≤ sl otherwise]

P[Lk > s]
.

where it is understood that in the sums, no al is equal to k or to any il.
To calculate the required moments of W we use the following result:

Lemma 1 (Stevens, 1939) For any subset I ⊆ {1, . . . , n} and any tk ∈
[0, 1] for all k ∈ I we have

P[Lk > tk for all k ∈ I] =

(
1−

∑
k∈I

tk

)n−1

+

,

Then by the definition of W and Lemma 1

E[W (s1, . . . , sn)] =
n∑

k=1

(1− sk)n−1
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The variance of W is

Var[W (s1, . . . , sn)] = E[W (s1, . . . , sn)2]− E[W (s1, . . . , sn)]2

=
n∑

k=1

(1− sk)n−1 +
∑
l 6=k

(1− sl − sk)n−1
+ − E[W (s1, . . . , sn)]2

Setting all si equal to s gives Propositions 1 and 2.

Proof of Proposition 3

This follows from the above proof after the following observations:

1. In the above proof, placing N random points on an interval is equiv-
alent to placing N + 1 random points on a circle. Neglecting the end
gaps is then equivalent to considering W ′ =

∑N
i=2 Yi. Calculation of

the mean and variance of W ′ gives the error bound in Proposition 2
when n = N − 1.

2. If N arcs of length S are placed uniformly at random on an interval
of length 1 so that each lies wholly on the interval, then their left
endpoints are uniformly distributed on the interval (0, 1 − S). By
scaling, we may therefore use the above proof with n = N + 1 and
s = S/(1 − S). Also by scaling, the requirement that no uncovered
gaps exist except end gaps of length at most d is equivalent to taking
s1 = sN+1 = d

1−S , si = S
1−S otherwise.

Discussion of Figure 1

It should not be inferred from Figure 1 that the error bound curves converge
as s → 0. Indeed, Huillet (2003) proves that for a fixed coverage depth, the
number of gaps almost surely tends to infinity as s → 0.
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