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We used high-pH anion-exchange chromatography with pulsed amperometric detection to quantify the
monosaccharides covalently attached to BaciUus thuringiensis HD-1 (Dipel) crystals. The crystals contained
0.54% sugars, including, in decreasing order of prevalence, glucose, fucose, arabinose/rhamnose, galactose,
galactosamine, glucosamine, xylose, and mannose. Three lines of evidence indicated that these sugars arose
from nonenzymatic glycosylation: (i) the sugars could not be removed by N- or O-glycanases; (ii) the sugars
attached were influenced both by the medium in which the bacteria had been grown and by the time at which
the crystals were harvested; and (iii) the chemical identity and stoichiometry of the sugars detected did not fit
any known glycoprotein models. Thus, the sugars detected were the product of fermentation conditions rather
than bacterial genetics. The implications of these findings are discussed in terms of crystal chemistry,
fermentation technology, and the efficacy of B. thuringiensis as a microbial insecticide.

Bacillus thuringiensis produces protein crystals that are
toxic to the larval stage of many insects and nematodes.
These toxins have generated a tremendous amount of aca-
demic and industrial interest because of their potential as an
alternative to chemical insecticides. Much of this research
has focused on the molecular biology of toxin production.
Hofte and Whiteley (20) compared the nucleotide sequences
for 42 crystal toxin genes and assigned them to 14 toxin
families. This approach will likely continue because of the
huge number of strains yet to be examined. For instance,
Martin and Travers (31) reported the isolation of fully 8,916
B. thuringiensis strains from soil samples obtained through-
out the world. A second approach is to examine the toxin's
mode of action and then characterize the toxin receptors
located in the larval gut (18). In this regard, it is important to
determine whether the toxin is a protein toxin or a glyco-
protein toxin.
The presence of covalently attached sugars on purified B.

thunrngiensis crystals has been extremely controversial.
Many studies (Table 1) have indicated that the toxin is
indeed a glycoprotein toxin. Carbohydrate values ranging
from 0.5 to 12% have been reported. However, Huber et al.
(23) detected <0.1% neutral sugars, and they noted that the
apparent sugar content decreased progressively as the crys-
tals were washed repeatedly. Also, the functional signifi-
cance of the attached sugars is called into question by the
evident toxicity of the B. thuringensis crystal toxin when
expressed in the bacteria Escherichia coli (43), Pseudo-
monas spp. (37), Caulobacter crescentus (46), andAgmenel-
lum quadruplicatum (2), in the yeasts Saccharomyces cere-
visiae and Pichia spp., and in plants such as tobacco (5) and
tomato (15). The gram-negative bacterial hosts would be
unable to carry out protein glycosylation in any fashion,
while the glycosylation patterns in the eukaryotic hosts
would likely be very different from those in the gram-
positive bacilli.

What is the origin of the grossly divergent crystal glyco-
sylation values reported in the literature (Table 1)? Possible
problems include the use of assay methods which would
detect neutral sugars but not aminosugars, extraction of
spore and crystal mixtures rather than purified crystal prep-
arations, and the use of Renografin gradients to accomplish
crystal purification. Renografin is the N-methyl-D-glucamine
salt of 3,5-diacetylamino-2,4,6-triiodobenzoate, and its pres-
ence could give artifactually high values in the anthrone test
for neutral sugars (40). However, another possible explana-
tion is nonenzymatic glycosylation (47).
Nonenzymatic glycosylation is a variation of the classical

Maillard reaction between reducing sugars and amino acids.
The sugars attach to free, nonionized amino groups such as
the N terminus and lysine side chains. The initial step is the
formation of a Schiff base between an amino group and the
open-chain form of the sugar. At this stage, the reaction is
still fully reversible. However, when the Schiff base (an
aldimine) undergoes the Amadori rearrangement to a ket-
amine, the attachment becomes effectively irreversible. Be-
cause of the requirement for a nonionized amino group, the
reaction is pH dependent. It proceeds rapidly at pHs of .8
and slowly at pHs of <6 (12). Much of the recent interest in
nonenzymatic glycosylation of proteins derives from the
discovery of elevated levels of glycosylated albumins and
hemoglobins in the blood of diabetic patients (12, 24, 47).
Indeed, the high frequency of cataracts and blindness in
diabetic patients is probably due to nonenzymatic glycos-
ylation of the lens protein in their eyes.
The present article reports that a majority of the sugars

covalently attached to lepidopteran-active B. thuringiensis
crystals are the products of nonenzymatic glycosylation.
Thus, their presence is determined not by bacterial genetics
but instead by the environmental parameters and fermentor
conditions operative after the crystals are released.

MATERIALS AND METHODS

* Corresponding author.
t Present address: U.S. Army Corps of Engineers, Missouri River

Division, Omaha, NE 68144.

Bacillus thuringiensis subsp. kurstaki (HD-1) was ob-
tained from a single-colony isolate from Dipel (Abbott Lab-
oratories, North Chicago, Ill.). The cells were grown on
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TABLE 1. Values reported for the carbohydrate content of
purified insecticidal proteins from Bacillus species

Carbo-
Bacterium hydrate Reference'

(%)
B. thuringiensis M 0.5 Holmes and Monro (21)
B. thuringiensis Berliner 12 Bateson and Stainsby (6)
B. thuringiensis HD-1 5.6 Bulla et al. (7)
B. thuringiensis (16 strains) 0.5-2.4 Swanson (45)
B. thuringiensis subsp. >11.2 Tyrell et al. (48)

israelensis
B. thuringiensis subsp. 6 Insell and Fitz-James (25)

israelensis
B. sphaericus 12 Narusu and Gopinathan (34)
B. thuningiensis HD-263 5 Aronson and Arvidson (4)
B. thuringiensis subsp. 2.7 Pfannenstiel et al. (40)

israelensis
a Arranged chronologically.

GYS (36) medium with rotary agitation at 150 rpm on a New
Brunswick Scientific G-52 shaker at room temperature. GYS
medium (36) contained 0.2% (NH4)2S04, 0.2% yeast extract,
and 0.05% K2HPO4 (pH 7.3), to which were aseptically
added, after autoclaving, 0.1% glucose, 0.02% MgSO4,
0.008% CaCl2. 2H20, and 0.005% MnSO4- 4H20. After
sporulation (2 to 3 days), the crystals were purified on
sodium bromide gradients (1) modified to include 7.5%
ethanol throughout, washed eight times in either distilled
water or 0.01 M K2HPO4 (pH 7.5), and lyophilized.

Other conditions for cell growth and harvesting. (i) Com-
mercial slurry. Crystals were purified from a concentrated
slurry taken directly from commercial fermentors (Abbott
Laboratories). The slurry was diluted 10:1 in water, and the
crystals were purified on NaBr gradients as described above.

(ii) Variations of GYS. Three variations of GYS were used
(see Table 5). In the first, glucose was omitted. In the
second, glucose was supplemented with 0.4% sodium gluta-
mate. In the third, glucose was replaced by 0.4% sodium
glutamate. The procedures for crystal purification were as
described above.

(iii) Solid medium. HD-1 cultures were grown on Bacto-
Nutrient Agar plates (Difco, Detroit, Mich.). They were
grown as a lawn of cells for about 5 days. After sporulation,
the cells were scraped off and washed with distilled water,
and the crystals were purified.

(iv) Harvest time. HD-1 cultures were monitored by phase-
contrast microscopy so that the cells were harvested as soon
as the sporangia had lysed, thereby releasing the crystals, or
as soon as the mature crystals and spores could be seen
within the sporangia. The sporangia were washed three
times and lysed in 0.1% Triton X-100, whereupon the
released crystals were purified in the usual way.

Separation of the P1 and P2 proteins by preparative cell
electrophoresis. The Bio-Rad model 491 Prep Cell System
was used to separate the 130-kDa (P1) and 65- to 70-kDa (P2)
proteins by continuous-elution electrophoresis. A 5-cm re-
solving gel (6% acrylamide) was polymerized in a 28-mm-
diameter tube. A 2-cm stacking gel (4% acrylamide) was
polymerized on top of the resolving gel. The discontinuous
buffer system of Laemmli (27) was used. NaBr-purified
crystals (3 to 6 mg) were dissolved at room temperature in
sodium dodecyl sulfate (SDS) sample buffer containing 0.5
M dithiothreitol (8). The disulfides were blocked by incuba-
tion in 0.5 M iodacetamide for 30 min before loading on the
gel. The gel was electrophoresed at 50 mA for 1 h, and then

the current was reduced to 40 mA. The SDS running buffer
was pumped at the rate of 1 ml/min. The elution chamber
outlet was connected to a fraction collector through a UV
monitor attached to a chart recorder. Portions (20 ,ul) of each
5-ml fraction were analyzed for their protein content by
SDS-polyacrylamide gel electrophoresis (PAGE) on a Bio-
Rad Mini-gel system.
The two protein peaks corresponded to pure bands of P1

and P2. Each peak was pooled separately and concentrated
either by dialysis and lyophilization or by acetone precipita-
tion followed by dialysis and lyophilization. Protein fractions
(2.5 mg) were then hydrolyzed and analyzed by Dionex
chromatography as described below.

Hydrolysis of the crystal protein. The crystal proteins were
acid hydrolyzed in order to release the sugars as monosac-
charides for analysis. Purified crystals (2.5 mg) were hydro-
lyzed in a screw-cap microcentrifuge tube in either 2 M
trifluoroacetic acid (TFA; high-pressure liquid chromatogra-
phy [HPLC] grade) or 4 N HCl (diluted from 6 N constant-
boiling HCl) for 4 h at 100°C. The acid was evaporated on a
Savant Speed-Vac concentrator, after which the pellet was
dissolved in distilled water. The samples were then filtered
through an ion-exchange cartridge (On-Guard A; Dionex
Corp., Sunnyvale, Calif.) prior to sugar analysis.
Sugar analysis of the crystal glycoprotein. The high-pH

anion-exchange chromatography with pulsed amperometric
detection system used for monosaccharide analysis (16) was
that marketed by Dionex Corp. All procedures followed
their protocol. The Carbopac PA 1 anion-exchange column
was washed for 15 min with 200mM NaOH and then with 2.5
mM NaOH for 15 min. After sample injection (100 ,ul), the
sugars were separated by elution with isocratic NaOH (2.5
mM) for 35 min. All eluants were prepared by dilution of
50% NaOH (Fisher Scientific). This system gave highly
reproducible retention times. Detection of the separated
monosaccharides was done by pulsed amperometric detec-
tion with a gold working electrode. To minimize baseline
distortion, 300 mM NaOH was added to the postcolumn
effluent via a mixing tee at a flow rate of 1 mlmin. The data
were integrated and plotted with a Dionex 4400 integrator.
2-Deoxyglucose was used as an internal standard. Sugar
contents (in micrograms per 100-,ul injection volume, con-
taining 2.5 mg of crystal) were converted to nanograms of
sugar per milligram of crystal protein. The retention times
and elution volumes of the samples were compared with
those of a standard mixture containing fucose, galac-
tosamine, galactose, glucosamine, glucose, xylose, and man-
nose.

Detection of glycoproteins after SDS-PAGE. Two proce-
dures were used for detection. The first used biotin hydra-
zide and streptavidin-conjugated horseradish peroxidase
(Pierce, Rockford, Ill.), and the second used digoxigenin-X-
hydrazide and antidigoxigenin-conjugated alkaline phos-
phatase (Boehringer Mannheim Corp., Indianapolis, Ind.).
In each case, the glycoprotein was treated with sodium
periodate to cleave the bond between adjacent hydroxyl
groups in the carbohydrate moiety, after which the newly
formed aldehydes were reacted with the respective hy-
drazides. The derivatized proteins were separated by SDS-
PAGE (8), transferred to nitrocellulose paper, and detected
enzymatically. All protocols were as recommended by
Pierce and Boehringer Mannheim. Peptide N-glycosidase F
and O-glycosidase were purchased from Boehringer Mann-
heim.

Incubation of crystal protein with radioactive glucose. The
procedures followed for labeling were those recommended
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TABLE 2. Carbohydrate content of NaBr-purified
crystals from B. thunrngiensis

Strain no. % Glucose
(NRRL) Serotype equivalentse

B-4039 Thuringiensis 1.9
B-4041 Alesti 1.3

Kurstaki (HD-1) 1.2
B-4042 Sotto 1.5
B-4043 Dendrolimus 1.4
B-4044 Kenyae 2.4
B-4045 Galleriae 1.8
B-4056 Canadensis 0.5
B-4046 Entomocidus 1.9
B-4057 Subtoxicus 1.0
B-4048 Aizawai 1.7
B-4049 Morrisoni 1.3
B-4050 Tolworthi 0.7
B-4058 Darmstadtiensis 1.8
B-4059 Toumanoffi 0.7
B-4060 Thompsoni 1.6

a Each value is the average for triplicate samples agreeing within at
least ±0.3%.

by Dolhoffer and Wieland (12). All incubations were carried
out in sterile 1.5-ml microcentrifuge tubes with filter-steril-
ized (0.2 ,um) buffers and glucose solutions. Purified crystal
protein (2.5 mg) was incubated in 1 ml of 50 mM glucose (30
,uCi of [6-3H]glucose; New England Nuclear)-10 mM sodium
phosphate with 0.02% sodium azide for 72 h at 25°C with
constant shaking (50 rpm on a New Brunswick Scientific G2
rotary shaker). Final pHs ranged from 4.9 to 9.0. Unbound
radioactivity was removed by precipitating the crystal pro-
teins with 7% trichloroacetic acid and centrifugation for 10
min at 10,000 rpm at room temperature. The pellets were
washed three times by repeated suspension in distilled
water, precipitation with trichloroacetic acid, and centrifu-
gation. The final pellets were dissolved in Beckman Ready
Value scintillation fluid, and radioactivity was counted in an
LKB model 1219 Rackbeta liquid scintillation counter.
For some incubations, crystals (2.5 mg) were solubilized

for 2 h in 50 mM NaOH at 37°C, after which the pH was
adjusted to ca. 8.0 and the proteins were incubated with
[6-3H]glucose as described above. Bovine serum albumin
(2.5 mg) in radioactive glucose-10 mM sodium phosphate
(pH 8.1)-0.02% sodium azide served as the positive control.

RESULTS

Covalent attachment. The presence of low levels of sugars
on NaBr-purified B. thuringiensis insecticidal crystals is a
common phenomenon. Table 2, taken from reference 45,
shows that crystals from 16 different serotypes of B. thurin-
giensis possessed from 0.5 to 2.4% glucose equivalents, as
determined by the phenol-sulfuric acid assay (17). These
sugars were not removed by repeated washing with 0.01 M
K2HPO4 (pH 7.5). In view of the known pH dependence of
nonenzymatic glycosylation (12), the pH of the washing
buffer might explain otherwise contradictory results in dif-
ferent laboratories. Additionally, to eliminate the possibility
of trapped sugar molecules occurring fortuitously within the
crystal interior, B. thuringiensis subsp. kurstaki crystals
were dialyzed for 5 days against 8 M urea at pH 8 and then
for 2 days against four changes of distilled water. This
procedure, introduced by Lecadet (28), causes the crystals
to swell and lose their refractility. The interchain disulfide

TABLE 3. HPLC analysis of the carbohydrate content of
B. thuringiensis HD-1 (Dipel) crystals"

Sugair Content (ng/mg) Stoichiometry'
2 M TFA 4 N HCI (residues/135 kDa)

Fucose 1,720 380 1.30
Arabinose/rhamnose 480 130 0.36
Galactosamine 180 100 0.13
Galactose 380 400 0.29
Glucosamine 150 100 0.11
Glucose 2,310 520 1.75
Xylose 140 80 0.11
Mannose 80 80 0.06

Total 5,440 1,790 4.11
%Sugar 0.54% 0.18%

a Crystals obtained from a concentrated slurry from production fermentors
(Abbott Laboratories) were purified on NaBr gradients and washed 15 times
in distilled water prior to analysis.

b Sugars arranged in order of elution. Values are the averages of .6
separate determinations agreeing within ± 20%.

c Sugar content detected via hydrolysis in 2 M TFA (0.54%) normalized to
number of residues expected per 135-kDa protein subunit.

bonds remain intact, and morphologically indistinguishable
crystals are reformed during the dialysis against distilled
water (28). However, the sugar contents of native and
urea-dialyzed crystals were identical (45).

Confirmation that the sugars detected (Table 2) were
indeed covalently attached came from the use of two proce-
dures for the detection of glycoproteins after their separation
by SDS-PAGE. In one procedure, the sugars were labeled
with biotin hydrazide and detected with streptavidin-horse-
radish peroxidase. In the second, the sugars were labeled
with digoxigenin hydrazide and detected with antidigoxige-
nin-alkaline phosphatase. In both cases, the high-molecular-
weight P1 proteins from HD-1 crystals were stained as if they
were glycoproteins. Significantly, in both cases, the hydra-
zide-reactive material could not be removed by enzymatic
treatment with either peptide N-glycosidase F or O-glycosi-
dase. Thus, the hydrazide-reactive material was not attached
to the crystal protein via either of the common eukaryotic
carbohydrate attachment mechanisms, i.e., N-linkage to
Asn or 0-linkage to Ser/Thr.

Sugar identity and stoichiometry. Purified B. thuningiensis
crystals were hydrolyzed and then analyzed for their sugar
contents by the Dionex HPLC carbohydrate analysis system
(Table 3). Acid hydrolysis conditions can influence the
identity of the sugars released, and consequently, hydroly-
ses in both 4 N HCI and 2 M TFA were used (Table 3).
Typical eukaryotic glycoproteins contain GlcNAc (deacety-
lated to glucosamine) and mannose, in defined stoichiomet-
ric ratios. However, the sugars detected in our B. thurin-
giensis crystals (Table 3) did not fit this pattern. Unusual
sugars such as fucose were prevalent, and when calculated
on a per-protein-chain basis, the sugar ratios were also
unusual (Table 3). Most of the sugars detected were present
at substantially less than one residue per protein chain.
Clearly the eukaryotic model did not apply. Note, however,
that the attachment patterns may be heterogeneous. The
sugar residues may be preferentially attached to proteins on
the surface of the crystals.

Preparative SDS-PAGE. As further evidence that the car-
bohydrates detected are covalently attached, the P1 (130 to
135 kDa) and P2 (65 to 70 kDa) proteins were separated by
preparative SDS-PAGE and then analyzed for their carbo-
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TABLE 4. HPLC analysis of the P1 and P2 proteins
purified by preparative SDS-PAGE

Content (ng/mg)
Sugar

P1 protein P2 protein

Fucose 440 144
Arabinose/rhamnose 4 6
Galactosamine 0 3
Galactose 6 0
Glucosamine 56 72
Glucose 468 848
Xylose 58 106
Mannose 21 23

Total 1,053 1,202
% Sugar 0.105% 0.12%

hydrate contents. Both protein fractions contained attached
sugars (Table 4).

Alternative growth conditions. Further evidence that crys-
tal glycosylation (Tables 3 and 4) had a nongenetic origin
came from analysis of crystals produced following a variety
of growth and harvesting conditions (Table 5). Each column
in the table represents crystals from the same organism, B.
thuringiensis HD-1 (Dipel). Medium variations included
supplementation of yeast extract with combinations of glu-
cose and glutamate (Table 5). In each case, the overall levels
of glycosylation and the percentages of the individual sugars
attached were distinctly different. Harvest time also influ-
enced the levels of sugars attached. The carbohydrate con-
tent of the crystals increased as the time between sporulation
and harvesting became longer (Table 5). The comparatively
high sugar contents of the crystals analyzed in Table 2 may
be the result of harvesting 3 to 5 days after sporulation (45).
The crystals were also glycosylated when formed on nutrient
agar plates (Table 5). Note that in three cases (nutrient agar,
glutamate-yeast extract-salts, and yeast extract-salts only),
crystal glycosylation occurred even when no sugars were
added to the bacterial growth medium.
Attachment of [6-3lHlglucose. Another method for demon-

strating nonenzymatic glycosylation involves mixing a
protein with [6-3H]glucose and then monitoring the incorpo-
ration of that radioactivity into trichloroacetic acid-preci-
pitable material (11, 12). Experiments with intact and

solubilized B. thuringiensis crystals showed the incorpora-
tion of 4.0 x 103 and 1.3 x 104 cpm, respectively, equivalent
to 0.044 and 0.09% glucose attachment, respectively. A
bovine serum albumin control gave 0.28% glucose attach-
ment. Each of these protein-glucose incubations was con-
ducted at pH 8.1. A similar experiment for intact crystals at
pH 4.9 gave only 1.9 x 103 cpm, equivalent to 0.021%
glucose attachment.

DISCUSSION

We have shown that insecticidal crystals from B. thunn-
giensis HD-1 (Dipel) contain low levels (c0.54%) of co-
valently bound sugars. Four observations support the con-
clusion that these sugars are the product of nonenzymatic
glycosylation: (i) the sugars could not be removed by N- or
O-glycanases; (ii) the levels of attached sugars were influ-
enced by the medium in which the bacteria were grown and
the time at which the crystals were harvested; (iii) unusual
sugars such as fucose were present; and (iv) the sugars were
present in non-stoichiometric ratios, usually far less than one
residue per protein chain. The implications of nonenzymatic
glycosylation as the likely cause of the otherwise disparate
values published for crystal glycosylation (Table 1) fall into
three general categories-the chemistry of the crystal itself,
fermentation technology during crystal production, and the
specificity and toxicity of the crystals produced.
With regard to crystal chemistry, the sugars identified

from B. thuringiensis HD-1 crystals (Table 3) agree nicely
with those reported by Tyrell et al. (48) for B. thuringiensis
subsp. israelensis crystals, i.e., glucose, mannose, fucose,
rhamnose, xylose, and galactosamine. Because we used acid
hydrolysis to release the sugars, any N-acetyl groups present
on glucosamine or galactosamine would have been cleaved
prior to analysis. Similarly, any sulfated or phosphorylated
sugars would not have been detected because those esters
would also have been hydrolyzed by the acid treatment.
However, the possible presence of phosphorylated sugars on
the B. thuningiensis crystals is attractive because it could
explain the findings of Watson and Mann (50). Using auto-
radiography of acid-hydrolyzed, 32P-labeled B. thunrngiensis
HD-1 crystals, they detected [32P]phosphothreonine and a
large spot (see Fig. 4 in reference 50) which was later
identified as 32Pi (30). This 32Pi could have been released

TABLE 5. Effect of growth and harvesting conditions on the carbohydrate content of B. thunngiensis HD-1 crystals

Content' (ng/mg)

Sugar'2 GYS Glutamate, GGYS, YS, 2 Nutrient

2 days At lysis Artificial 2 days 2 days days agar, 2 days
lysis

Fucose 164 220 96 668 112 204 72
Arabinose/rhamnose 54 46 24 398 76 104 120
Galactosamine 104 72 40 148 52 368 80
Galactose 32 0 4 128 32 1,172 360
Glucosamine 356 176 80 144 96 60 360
Glucose 448 168 204 280 428 900 428
Xylose 60 56 24 44 28 80 46
Mannose 104 52 72 76 24 52 36

Total 1,322 790 544 1,886 848 2,940 1,502
% Sugar 0.13% 0.08% 0.05% 0.19% 0.08% 0.29% 0.15%

a Sugars arranged in order of elution. Values are the averages of >2 separate determinations agreeing within ±20%.
bMedium variations: GYS, glucose-yeast extract (YE)-salts; YS, YE-salts; GGYS, glucose-glutamate-YE-salts; glutamate, glutamate-YE-salts. Harvest

variations: 2 days, ca. 2 days after sporulation; at lysis, ca. 18 h after sporulation; artificial lysis, after first visible spore and crystal formation.
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from the crystals by acid hydrolysis of attached phosphory-
lated sugars.
Nonenzymatic glycosylation provides an alternative ex-

planation for the very large (.500-kDa) crystal proteins
often detected by reducing SDS-PAGE (7, 8, 35). Many of
these crystal proteins are too large to cross the stacking
gel-separating gel interface, while others are too large to
leave the sample well. This phenomenon becomes more
prevalent as the crystals age (35); in crystals which have
been stored for a year or more, these giant proteins can

constitute 40 to 50% of the total protein (35). This protein
polymerization could result from the gradual formation of
covalent cross-links, possibly in the form of lysinoalanine
linkages (35). An alternative explanation (47) would be that
the nonenzymatically glycosylated proteins underwent
cross-linking and polymerization by a mechanism similar to
the Maillard-type browning reactions. This process is
thought to be associated with the accelerated aging of tissues
in diabetics (47). It may also be associated with the forma-
tion of giant proteins during the storage of B. thunngiensis
crystals (8, 35).
Nonenzymatic glycosylation is a chemical reaction in

which the precise nature of the protein is of little signifi-
cance. Thus, the phenomenon should be applicable for all
extracellular microbial proteins, particularly those present
during prolonged incubations. This caveat should be even
more relevant for proteins whose enzymatic activity creates
additional reducing sugars. Four possible examples are the
chloride-stimulated cellobiosidase from the gram-negative
bacterium Fibrobacter succinogenes (formerly Bacteroides
succinogenes), reported (22) to contain 8 to 16% carbohy-
drate; the pectin methylesterase from Clostnidium thermo-
saccharolyticum (49); and the cellulase and xylanase from a

Bacillus sp., which were reported to contain 11.5 and 20%
carbohydrate, respectively (38).
There are three reasons why the insecticidal B. thurin-

giensis crystals are more likely than other proteins to be
glycosylated. (i) For most bacilli, the culture pH rises to 28
during sporulation. (ii) After sporulation, most researchers
allow the autolytic process to go to completion. Thus, the
crystals are harvested 2 to 5 days after sporulation. (iii) As a
consequence, the spores and crystals are released into a

milieu containing a multitude of carbohydrate degradation
products which had been part of the sporangia and vegeta-
tive cells. Residual sugars from the growth medium may also
be present. Thus, the sugars found on the crystals may
originally have been part of the teichoic or teichuronic acids
(3), the glycoprotein crystalline cell surface layer, also
known as the S-layer (32, 33), or some other part of the
Bacillus cell envelope (3). As examples, teichuronic acid
from Bacillus megaterium contains rhamnose (51), and the
cell surface S-layer from Bacillus stearothermophilus con-
tains rhamnose, N-acetyl mannuronic acid, glucose, and
N-acetylglucosamine (32, 33).

Nonenzymatic glycosylation is likely responsible for the
sugars detected on lepidopteran-active B. thuringiensis crys-

tals. Consequently, our view of the B. thunngiensis product
as a glycoprotein toxin shifts from the realm of bacterial
genetics to that of fermentation conditions. This shift makes
comparisons from one laboratory to another even more

difficult. Factors which must be considered now include the
time between sporulation and harvesting; the pH, tempera-
ture, and residual nutrient levels present during this interval;
strain differences, which might be accompanied by differ-
ences in the polymers present in the cell envelope; and
differences in the growth medium, which might influence the

polymers present in the bacterial cell envelope. For in-
stance, the percent teichoic and teichuronic acid composi-
tion is often determined by the availability of Mg2", K+, and
phosphate ions in the growth medium (14).
With regard to fermentation technology, nonenzymatic

glycosylation now provides a rational explanation for three
long-standing observations in the fermentation industry: (i)
the existence of batch-to-batch variability, (ii) the realization
that merely starting with the same microorganism does not
guarantee the same product, and (iii) the empirical finding for
B. thuringiensis that maintaining a pH of c6 during and after
sporulation is desirable for maximum toxicity. In this light,
different pHs during the period following sporulation could
even shift the host specificity of B. thuningiensis from one
insect to another.
How does nonenzymatic glycosylation alter the toxicity of

B. thuringiensis crystals? Data which address this point were
provided by Scherrer et al. (42). They grew B. thuningiensis
subsp. thuringiensis in a yeast extract-salts medium contain-
ing six levels of glucose varying from 0 to 1.5%. The crystals
produced at the different glucose concentrations were bio-
assayed against larvae of the cabbage butterfly Pieris bras-
sicae. Significantly, the toxic activities were not linearly
related to the protein content of the crystals. On a per-
milligram-of-protein basis, the crystals produced at the dif-
ferent glucose concentrations varied up to fourfold in their
toxicity (42).
How could these changes in toxicity occur? Three possi-

ble mechanisms are suggested by the fact that nonenzymatic
glycosylation occurs preferentially on lysine side chains at
alkaline pHs. (i) Glycosylation could occur in the highly
alkaline midguts of lepidopteran (13) and dipteran (10) lar-
vae. The extent of glycosylation would depend on the free
sugars available and thus would also depend on larval diet.
Many examples are known in which the effectiveness of the
B. thunngiensis crystal toxin is dependent on the composi-
tion of the larval diet (26, 41, 44). In most cases, these effects
have been attributed to the presence of allelochemicals in the
plant food ingested by the insect larvae. (ii) The B. thunn-
giensis protoxin is activated in the larval gut by trypsin-like
enzymes. However, trypsin only cleaves peptide bonds on
the carboxyl side of lysine or arginine residues (19). Thus,
glycosylation of the lysine amino groups could alter the
proteolytic cleavage pattern of these toxins. The resultirtg
toxicity shift could be in either direction. Glycosylation
could block a necessary step in toxin activation or could
create a protease-resistant domain by protecting a critical
lysine-containing cleavage site. The latter possibility be-
comes more likely when one considers the heterogeneity of
which lysine side chains are glycosylated. As an example,
for human albumin (24), only 10 of the 59 lysines were
glycosylated, and fully 33% of that glycosylation occurred at
Lys-525. Favored glycosylation sites included Lys-Lys,
Lys-His, and Lys-His-Lys sequences as well as those Lys
residues located near disulfide bonds (24). (iii) Lysine side
chains could themselves be necessary for toxicity. For the
mosquito-active B. thuringiensis subsp. israelensis toxin
(39), lysine modification led to a dramatic drop in toxicity.
However, the situation appears to be somewhat different for
lepidopteran-active B. thuringiensis toxins. Choma and Ka-
plan (9) found that lysine-derivatized HD-73 toxin retained
full activity towards spruce budworm larvae, while Yan and
McCarthy (52) found that lysine-derivatized HD-524 toxin
retained full cytolytic activity towards a cell line from the
cabbage looper, Trichoplusia ni. Our current research in-
volves a comparison of the 50% lethal concentrations of
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differentially glycosylated B. thuringiensis crystals towards
several lepidopteran larvae.
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