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The temperature of chilled foods is a very important variable for microbial safety in a production and
distribution chain. To predict the number of organisms as a function of temperature and time, it is essential
to model the lag time, specific growth rate, and asymptote (growth yield) as a function of temperature. The
objective of this research was to determine the suitability and usefulness of different models, either available
from the literature or newly developed. The models were compared by using an F test, by which the lack of fit
of the models was compared with the measuring error. From the results, a hyperbolic model was selected for
the description of the lag time as a function of temperature. Modified forms of the Ratkowsky model were

selected as the most suitable model for both the growth rate and the asymptote as a function of temperature.
The selected models could be used to predict experimentally determined numbers of organisms as a function
of temperature and time.

Predictive modeling is a promising field in food microbi-
ology. Models are used to describe the behavior of microor-
ganisms at different physical and chemical conditions, such
as temperature, pH, and water activity. They can be used to
predict microbial safety or shelf life of products, to find
critical points in the process, and to optimize production and
distribution chains. A major factor determining the specific
growth rate of microorganisms in chilled foods is tempera-
ture. Various models have been proposed to describe this
relationship. Spencer and Baines (16) proposed a linear
dependency of the rate of microbial spoilage of fish on
temperature. This relationship was shown to be valid only at
temperatures below 6°C (8). Therefore, Olley and Rat-
kowsky (8) proposed an Arrhenius (2)-type equation. This
equation could predict results up to 15°C. However during
cooling, freezing, heating, or thawing, regions in the product
can have a temperature far above 15°C, and therefore a
wider growth-temperature range is important. Schoolfield et
al. (13) proposed a nonlinear Arrhenius type of model on a
biological basis, describing the specific growth rate as a
function of temperature over the whole biokinetic tempera-
ture range. Further empirical models were proposed by
Ratkowsky et al. (10, 11), i.e., the square root model,
describing the specific growth rate up to 15°C, and the
expanded square root model, describing the growth rate over
the whole biokinetic temperature range. A model which is
only seldom used is the model of Hinshelwood (7), although
it is a simple model with a biological basis. Adair et al. (1)
modeled the growth rate and the inverse of the lag time using
the Ratkowsky and Schoolfield models and concluded that
the Schoolfield model gives the best predictions.
The literature provides us with a number of models.

However, a systematic approach to determine the most
suitable model is lacking. The objective of this research was
to determine the suitability and usefulness of the different
models by systematic and statistical analysis of a large
amount of experimental data.

* Corresponding author.

THEORY

Description of experimental bacterial growth data. The
growth curve is defined as the logarithm of the relative
population size [y = ln (N/NO)] as a function of time (t). For
bacteria, the growth rate shows a lag phase that is followed
by an exponential phase, and finally it shows a decreasing
growth rate down to zero resulting in a maximum value of
the number of organisms. A growth model with three param-
eters can describe this growth curve (18): the maximum
specific growth rate RLm' which is defined as the tangent in
the inflection point; the lag time X, which is defined as the
t-axis intercept of this tangent; and the asymptote A, which
is the maximal value reached. The three parameters are
determined from growth data by describing them by the
Gompertz model (6). Therefore, the Gompertz model (6),
with parameters a, b, and c, was rewritten (18) to include A,
PLm, and X [e = exp(1)].
Modified Gompertz:

y=Aexp{ -exp[ im e (x t) +1]} (1)

Growth-temperature relations. A number of growth-tem-
perature relations are compared. Included are models from
the literature as well as modified forms. The models are all
written with the growth rate as a function of temperature.
Transformation of the growth rate (square root, logarithm)
was not executed, as others tend to do (1, 4, 9, 17), to fit all
data in the same way. Using transformations on data results
in a different weighting of different numerical values. Using
the minimum residual sum of squares (RSS) criterion, one
has to take into account that a transformation changes the
distribution of errors at different numerical values. If regres-
sion without weighting is used, the measuring error must be
normally distributed with the same standard deviation at all
different T values.
The growth rate used is the PUm found with the modified

Gompertz model.
(i) Square root model of Ratkowsky et al. (11). This model

does not have a biological basis. It is based on the observa-
tion that at lower temperatures the square root of the specific
growth rate is linear with temperature (11):
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PJm = [bl(T - Tmin)]2 (Ratkowsky 1) (2)
where b is a Ratkowsky parameter (0C-1 h-0 5), and Tmin is
the minimum temperature at which growth is observed (°C).
The subscript 1 relates to Ratkowsky 1.

(ii) Expanded square root model of Ratkowsky et al. (10).
To describe the growth rate around the optimum and the
maximum temperatures, Ratkowsky et al. (10) expanded
their equation:

PUm = (b2(T - Tmin) - {1 - exp[C2(T - Tmax)]})

to low temperature, H is the enthalpy of activation
(J. mol '), and Th is the temperature (K) at which the
enzyme is 50% inactivated due to high temperature.

(v) Hinshelwood model (7). The Hinshelwood model is
based on the following assumptions. (i) The total amount of
all compounds in the cell is constant (balanced growth), and
only one enzyme reaction is rate controlling. (ii) The product
of this enzyme reaction is a heat-sensitive essential biomol-
ecule which is irreversibly denatured at high temperatures.
Both the enzyme reaction and the high-temperature denatur-
ation show an Arrhenius type of temperature dependency
and are zero order. This results in the following equation:

(Ratkowsky 2) (3)
where c is a Ratkowsky parameter (oC-l), and Tmax is the
maximum temperature at which growth is observed (°C).
The subscript 2 relates to Ratkowsky 2.

(iii) Modified Ratkowsky model (Ratkowsky 3). At temper-
atures above Tmax, equation 3 predicts positive values of the
growth rate; therefore, this model cannot be used above
Tmax. We modified the Ratkowsky model so that the decline
of P,m toward Tmax is described by an exponential function
and not by the square of an exponential function, so that
extrapolation above the maximum growth temperature Tmax
predicts no positive values of the growth rate:

PUm = [b3(T - Tmin)]2 {1 - exp[c3(T - Tmax)]}
(Ratkowsky 3) (4)

The subscript 3 relates to Ratkowsky 3.
(iv) Model of Schoolfield et al. (13). The Schoolfield model

is based on the model of Sharpe et al. (14, 15), which has the
following assumptions. (i) The total amount of all com-
pounds in the cell is constant (balanced growth), and only
one enzyme reaction is rate controlling. The rate-controlling
enzyme is reversibly denatured at very low and at very high
temperatures. (ii) The total amount of rate-controlling en-
zyme per cell is constant. (iii) The reaction rate of the
rate-controlling enzyme reaction is zero order. (iv) The
enzyme reaction and both the high- and low-temperature
inactivation show an Arrhenius type of temperature depen-
dency. This results in the following equation:

k(exp- Ea)

F.Lm = (5)
1 + k, exp( RTi) + kh ex(p-h)

E*R
ILm = k1 expK 2-)x (7)

where k, and k2 are frequency actors (h-1) and El and E2 are
the activation energies (J mol-1) of the enzyme reaction
and the high-temperature denaturation, respectively.

(vi) General model. There is also a model (general model)
that uses the mean values of the measured data. At every
temperature, this model gives the mean value of the data at
that temperature. This model is of the type "at temperature
q the growth rate is z" and is therefore not useful for
interpolation.
At one temperature Ti (with i = 1 to i = 1.18), m growth

rates are measured (duplicates, triplicates . . .). In our case,
m is not the same value at different temperatures. Then the
model for the best prediction of a growth rate at a certain
temperature can be proposed, that is, defined as the mean
value i m(i) of the measured growth rates at that tempera-
ture. This model is called the general model:

m Ium(i, j)
iim(i) = I

j=1 m
(8)

with jij(i, j) being the fh growth rate at Ti and i m(i) being
the mean growth rate at T1.

Asymptote-temperature relations. For the asymptote data,
no extensive literature exists as it did for the growth rate. For
the asymptote data, a number of models were tested, includ-
ing the Hinshelwood (equation 7), Ratkowsky 2 (equation 3),
Ratkowsky 3 (equation 4), and Schoolfield (equation 6) mod-
els. These equations can be regarded as empirical fit models
only. Since the asymptote did not show a strong dependency
on temperature at the lower temperature range, a second
modified Ratkowsky model is proposed (Ratkowsky 4):

where the subscript a relates to the controlling enzyme
reaction, the subscript h relates to high-temperature inacti-
vation, and the subscript I relates to low-temperature inac-
tivation. ka(h-), kl(-), and kh(-) are frequency factors, E is
the activation energy (J * mol-1), R is the gas constant
(J- K- 1 * mol- 1), and T is the temperature (K).

In equation 5, the parameters are strongly correlated.
Schoolfield et al. (13) modified the equation to diminish the
correlation:

T [Haf 1 i\1
IR25- expi-i - -I298 [R 298 T/]

P~~m [HI I 1 i\Hht 1 1~y 6

1+expl-I --I+ expl- -I
L[R\T T/j [R\Th T)]

where PL25 is the growth rate at 25°C (h-1), T, is the
temperature (K) at which the enzyme is 50% inactivated due

A = b4 {1 - exp[c4(T - TA.)]} (9)

where b4 is the final level reached at low temperatures and
TA ax is the maximum temperature at which growth is ob-
served (C).
Lag time-temperature relations. Adair et al. (1) modeled

the inverse of the lag time data with growth models (Rat-
kowsky, Schoolfield). By taking the inverse of the data,
numerical values of the lag time that are >1 will approach
zero after the transformation and are therefore weighted
less. Transforming the model predictions back to lag times
then results in large prediction errors (0 = 1/8,000 = 1/800
but oo = 8,000 =$ 800). For this reason, we did not use the
inverse of the data, but the inverse of the growth rate
equations are used as empirical models, to fit the data.

In this study, the lag time data showed a large measuring
error at high numerical values (the standard deviation was

proportional to the mean value). To limit this influence, a
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TABLE 1. Comparison of the models describing the growth rate

Model' No. of df RSS2 f Fparameters

P.m = 0 0 38 20.793 139.5 2.1
P.m = a 1 37 5.994 41.74 2.2
Pm = aT 1 37 3.744 25.63 2.2
.m = aT + b 2 36 3.738 27.19 2.2
Hinshelwood 4 34 0.248 0.729 2.2
Ratkowsky 3 4 34 0.211 0.409 2.2
Ratkowsky 2 4 34 0.220 0.483 2.2
Schoolfield 6 32 0.215 0.516 2.3
General 18 20 (dfi) 0.164 (RSS1)
lPm = .m(i J) 38 0 0.000

a P.m is the growth rate to be modeled; Lm(i, j) is theJh growth rate at T,;
a and b are regression coefficients; T is the temperature.

logarithmic transformation is used on the experimental data
and on the model equations. In conclusion, the transformed
lag time data are then modeled by using the logarithm of the
inverse of the growth rate models. For instance, for the
Ratkowsky 2 model (equation 3), we fitted:

ln(A) = ln[(b2(T - Tmin) {1 - exp[c2(T - Tmax)]}) - 2] (10)

which is the same equation as equation 3, except for that the
model is inverted and the natural logarithm of the model is
taken.
The results of Adair et al. (1) and Gill et al. (5) show a

hyperbolic behavior of the lag time and the temperature;
therefore, a hyperbolic equation is also used:

/1(h') 1.4

1.2

0.8 / \

0.8

0.4~~~~~~~~~

0.6

0 10 20 30 40 so

Temperature (°)

FIG. 2. Growth rates modeled with the Ratkowsky 3 model.
Symbols: 0, estimated growth rate values; , the model.

k m

RSS1 = E [m( j) M )]2
i = 1 j = 1

(general model) (12)

with Pjm(i,j) being theph growth rate at Ti and jum(i) being the
mean growth rate at Ti.
The sum of squares of the deviations between the data and

a given growth temperature model is calculated (RSS2) as:

k m

RSS2 = E E [Jm(i, j) -M(i)]2
i = 1j= 1

ln(A) = ( (11)

The parameter q is the temperature at which the lag time is
infinite (no growth). The parameter p is a measure for the
decrease of the lag time when the temperature is increased.
Comparison of the models. The models are compared

statistically with the use of an F ratio test. With the general
model (equation 8), the measuring error is estimated by
determining the deviation of the measured values from the
mean value at one temperature. The sum of squares of the
deviations between the data and the general model is calcu-
lated (RSS1):

P (h1)

Temperature (°C)

FIG. 1. Growth rates modeled with the Hinshelwood model.
Symbols: *, estimated growth rate values; , the model.

(growth-temperature model) (13)

with p.m(i) being the model prediction at temperature Ti.
RSS2 will always be larger than or equal to RSS1. The

RSS2 of the growth-temperature model used is built up from
both the measuring error and the lack of fit; therefore, the
difference between the RSS2 of the model and RSS1 (the
measuring error) is calculated as an estimation of the lack of
fit. If the lack of fit (RSS2 - RSS1) is much smaller than the
measuring error (RSS1), the model is adequate. If the lack of
fit is much larger than the measuring error, the model is not
adequate. This comparison between the lack of fit and the
measuring error can be quantified statistically by theftesting
value:

/ (h-')

Temperature (C)

FIG. 3. Growth rates modeled with the Ratkowsky 2 model.
Symbols: 0, estimated growth rate values; -, the model.
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FIG. 4. Growth rates modeled with the Schoolfield model. Sym-
bols: 0, estimated growth rate values; , the model.

(RSS2 -RSS1)/(df2- df1)

TABLE 4. Results of the Schoolfield parameter estimation

* ~~~~~95%ConfidenceParameter Estimate inervaInterval

P-25 (h'-) 1.42 -0.0576 to 2.91
Ha (kJ) -5.43 -59.8 to 49.0
HI (kJ) -141.1 -182.2 to -100.1
T, (K) 297.7 286.0 to 309.3
Hh (kJ) 687.9 402.1 to 973.7
Th (K) 314.7 314.0 to 315.3

TABLE 5. Correlation matrix for Table 4 parameters

Parameter P.25 Ha H, T, Hh Th

P.25 1.000 -0.990 0.610 0.997 0.436 0.711
Ha -0.990 1.000 -0.512 -0.981 -0.506 -0.791
H, 0.610 -0.512 1.000 0.642 -0.011 0.051
T, 0.997 -0.981 0.642 1.000 0.417 0.682
Hh 0.436 -0.506 -0.011 0.417 1.000 0.721
Th 0.711 -0.791 0.051 0.682 0.721 1.000

RSS,/df1

tested against Fdf2 df1 (14)

where dfi is the number of degrees of freedom from the
general model that equals the total number of datum points
minus the number of different temperatures measured (38 -

18 = 20). df2 is the number of the degrees of freedom from
the growth-temperature model that equals the number of
datum points minus the number of parameters.
These statistics are not valid for nonlinear models but at

least give an indication about the suitability of the models,
since even for nonlinear models, the variance ratio shown
above is approximately F distributed when the sample size is
large (12). This analysis is an approximation at best, and this
procedure should be considered as an informal process,

rather than a rigorous statistical analysis, because of the use

of nonlinear models (12).

MATERIALS AND METHODS

Microbial experiments. In 38 experiments at 18 different
temperatures, Lactobacillus plantarum (American Type
Culture Collection determined; no ATCC number) was cul-
tivated in MRS medium (Difco Laboratories). The culture
was stored frozen (-16°C). The bacteria were cultivated
twice at 30°C, first for 24 h and second for 16 h. Growth was

TABLE 2. Results of the Hinshelwood parameter estimation

Parameter Estimate 95% Confidence interval

k, (h-') 1.249E+21a -1.903E+24 to 1.906E+24
E1 (kJ) 107.2 0.7415 to 213.7
k2 (h-1) 1.319E+21 -1.903E+24 to 1.906E+24
E2 (kJ) 107.4 0.6361 to 214.1
a Where E + 21 means x 1021.

TABLE 3. Correlation matrix for Table 2 parameters

Parameter k, El k2 E2

k1 1.000 0.998 0.99999 -0.998
El 0.998 1.000 0.998 -0.993
k2 0.99999 0.998 1.000 -0.998
E2 -0.998 -0.993 -0.998 1.000

monitored by using 20-ml tubes, each containing 10 ml of
medium and inoculated with the test organism to reach a

target initial titer of 5 x 105 CFU/ml. The test tubes were

incubated statically at different temperatures from 6°C up to
43°C as follows (temperatures in °C and number of experi-
ments in parentheses): 6.0 (1); 8.5 (2); 12.1 (2); 15.2 (2); 18.2
(5); 21.5 (2); 25.0 (2); 28.5 (2); 32.1 (3); 35.1 (3); 36.6 (1); 37.9
(1); 38.4 (1); 40.0 (1); 41.5 (3); 41.9 (2); 42.2 (2); 42.8 (3). At
appropriate time intervals (depending on temperature), the
inoculated cultures were vortexed and samples of 0.1 ml
were removed for serial dilution in peptone saline solution (1
g of Bacto-Peptone [Difco], 8.5 g of NaCl [Merck p.a.] per
liter). Bacterial numbers were determined with a pour plate
(MRS medium with 12 g of agar [Agar Technical Oxoid Ltd.]
per liter). The pour plates were incubated for 48 h at 30°C
before counting.

Fitting of the data. The modified Gompertz equation
(equation 1) was fitted to the data of the 38 growth curves by
nonlinear regression with a Marquardt algorithm (18). This
resulted in estimates for the specific growth rate, lag time,
and asymptote of these 38 different growth curves. The
model equations were also fitted to these data by nonlinear
regression. Confidence intervals are based on the variance-
covariance matrix of the parameters, calculated with the
Jacobian matrix.

Selection of the models. First the models were compared

TABLE 6. Results of the Ratkowsky 2 parameter estimation

Parameter Estimate 95% Confidence interval

b2 0.0377 0.0321 to 0.0433
Tmin 2.82 -0.223 to 5.86
C2 0.250 0.173 to 0.326
Tmax 44.9 44.2 to 45.5

TABLE 7. Correlation matrix of Table 6 parameters

Parameter b2 Tmin C2 Tmax

b2 1.000 0.963 -0.824 0.628
Tmin 0.963 1.000 -0.687 0.499
C2) -0.824 -0.687 1.000 -0.922
Tmax 0.628 0.499 -0.922 1.000
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TABLE 8. Results of the Ratkowsky 3 parameter estimation

Parameter Estimate 95% Confidence interval

b3 0.0410 0.0335 to 0.0485
Tmin 3.99 0.881 to 7.11
C3 0.161 0.0940 to 0.228
Tmax 43.7 43.4 to 44.1

TABLE 9. Correlation matrix for Table 8 parameters

Parameter b3 Tmin C3 Tmax

b3 1.000 0.960 -0.910 0.591
Tmin 0.960 1.000 -0.783 0.466
C3 -0.910 -0.783 1.000 -0.804
Tmax 0.591 0.466 -0.804 1.000

statistically by using the F test. This gave all the models that
are statistically accepted, and then other criteria could be
used to choose the best model. First the models with the
fewest number of parameters were selected. From this
subset of models, the model with the lowest RSS2 was
selected.

If one of the statistically accepted models is based on
biological principles and the parameter estimates are confi-
dent and have an acceptable value, the biological relevance
of this model is discussed.

RESULTS AND DISCUSSION

Growth-temperature relations. The specific growth rates as
function of temperature (38 measurements) are described by
using different models. The RSS2 values and the f testing
values of the different growth temperature relations are
shown in Table 1. Additionally, some simpler models are
given such as "the growth rate is zero at all temperatures"
(IL = 0); "the growth rate is constant at all temperatures" (,u
= a); "the growth rate is linearly dependent on tempera-
ture" (p. = aT + b). It is clear from Table 1 that the RSS2
value decreases with an increasing number of parameters.
The general model with 18 parameters exactly predicts the
mean values of the measured data. This model is of the type
"at temperature q the growth rate is z" and is therefore not
useful for interpolation. This comparison clearly shows what
can be achieved with modeling: reduction of data to a limited
number of parameters, more specifically to a model that is
accepted statistically with as few parameters as possible.

TABLE 10. Comparison of the models describing the asymptote

Modela No. of df RSS2 f F

A = 0 0 38 2,378 183 2.1
A = a 1 37 128 9.37 2.2
A = aT 1 37 587 47.1 2.2
A = aT+ b 2 36 111 8.41 2.2
Hinshelwood 4 34 178 16.4 2.2
Ratkowsky 2 4 34 28.7 1.43 2.2
Ratkowsky 3 4 34 28.3 1.39 2.2
Ratkowsky 4 3 35 31.3 1.58 2.2
Schoolfield 6 32 20.4 0.711 2.3
General 18 20 (dfl) 14.3 (RSS1)
A = A(i,j) 38 0 0.0

a A is the asymptote to be modeled; A(i, j) is the Ih asymptote at T,; a and
b are regression coefficients; T is the temperature.

Asymptote

Temperature (°C)

FIG. 5. Asymptote data modeled with the Ratkowsky 4 model.
Symbols: 0, estimated asymptote values; , the model.

Some investigators (1) only compare the RSS2 of models and
decide which model is the best by determining which model
gives the lowest RSS2. From Table 1 it can be seen that there
are always models with a lower RSS2, even one with RSS2 =
RSS1. But these models have so many parameters that the
aim of modeling, reducing the data to a statistically accepted
model with a limited number of parameters, is not achieved.
The lack of fit is probably a more stringent test of model
adequacy.
From the curvature of the datum points in Fig. 1, it can be

easily seen that the data are not well described by a constant
value or a straight line. Indeed, for the first four models the
f testing value is much larger than the F table value, and
therefore these models are rejected. From Table 1 it can be
concluded that the Hinshelwood (four parameters), Rat-
kowsky 2 (four parameters), Ratkowsky 3 (four parameters),
and Schoolfield (six parameters) models are accepted statis-
tically, because thef testing value is lower than the F value.
In Fig. 1 to 4, where for these four models the predicted and
measured values are shown, it can be seen that these models
describe the curvature of the growth rate-temperature rela-
tion. As these four models are all accepted statistically,
other criteria can be used to choose the best model.
Among the four-parameter models, the Hinshelwood

model is based on a fundamental model (Arrhenius). In the
Hinshelwood model, the parameters are strongly correlated
(Table 3). A value of 1 for two parameters in the correlation
matrix means that these two parameters are totally corre-
lated with each other. Parameters that are strongly corre-
lated (>0.999) are difficult to estimate, because a change in
one parameter will be compensated for by a change in a
correlated parameter, and numerous iterations are neces-
sary. Moreover, the confidence intervals of such parameters
are very large (Table 2). A second problem with the Hinshel-
wood model is that the estimates for the activation energies
E1 and E2 are almost the same value (107.2 and 107.4 kJ).
This results in a subtraction of two large values to calculate
the growth rate. Reparameterization of the model, however,
can possibly reduce these problems. Normally, the activa-

TABLE 11. Results of the Ratkowsky 4 parameter estimation

Parameter Estimate 95% Confidence interval

b4 8.46 8.09 to 8.82
C4 1.25 0.709 to 1.78
TA 43.1 42.9 to 43.4

APPL. ENVIRON. MICROBIOL.
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TABLE 12. Comparison of the models describing the lag time

Model' ~ No. of df RS f F
Model" parameters df RS f F

ln(X) = 0 0 38 127 17.6 2.1
ln(X) = a 1 37 58.6 7.97 2.2
ln(X) = aT 1 37 95.6 13.7 2.2
ln(X) = aT + b 2 36 29.1 3.57 2.2
Hyperbola 2 36 9.71 0.357 2.2
(Ratkowsky 1)-' 2 36 18.3 1.60 2.2
(Ratkowsky 2)-' 4 34 9.14 0.238 2.2
(Ratkowsky 3)-1 4 34 9.21 0.221 2.2
General 18 20 (df1) 7.55 (RSS,)
ln(X) = ln[X(,j)] 38 0 0.0

" X is the lag time to be modeled; X(i, j) is the jth lag time at T,, a and b are
regression coefficients; T is the temperature.

tion energy for an enzyme-catalyzed reaction is 10 to 80 kJ,
and for a denaturation reaction it is 400 to 1,200 kJ (3).
Neither estimated activation energy is within these intervals.
This means that the fitting of the Hinshelwood relation to the
data results in an estimation of unrealistic activation energy
values. This makes the biological background of the model
discussable. A third problem with the Hinshelwood model is
that the predictions of the growth rate at low temperatures
are too high. Growth rates at low temperatures are especially
important during chilled food storage. Concluding all these
aspects, this model can be regarded as not appropriate.

Schoolfield et al. (13) reparameterized their model to
overcome the correlation problem, and as can be seen in
Table 5, they were successful. The parameter Ha, should be
the enthalpy of activation of the reaction that is catalyzed by
the rate-controlling enzyme. A negative value, however, was
found. However, part of the confidence interval covers
realistic values (Table 4). The other parameters also show
realistic values. Therefore, the biological background of the
Schoolfield model can exist. However, often the six param-
eters of the Schoolfield model are used as fitting parameters
instead of estimates of biologically relevant parameters.
Only with a very large data set can this model be used to
estimate the biological parameters. Even with 38 datum
points, the confidence intervals of the parameters are too
large (Table 4).
As can be seen in Tables 7 and 9, the correlation matrices

of the Ratkowsky 2 and Ratkowsky 3 models show no

Ln(I~)

6

4

2

Temperature ('C)

FIG. 6. Lag time data modeled with a hyperbola model. Sym-

bols: 40, estimated lag time values; ~, the model.

TABLE 13. Results of the hyperbolic parameter estimation

Parameter Estimate 95% Confidence interval

p 23.9 19.1 to 28.7
q 2.28 1.19 to 3.37

nondiagonal values of >0.999, so in these models the param-

eters can be estimated easily.
Statistical evaluation of the models shows that the Hin-

shelwood, Ratkowsky 2, Ratkowsky 3, and Schoolfield

models all describe the growth rate data sufficiently. There-

fore, an appropriate model can be chosen on the basis of

other grounds. The models with the lowest number of

parameters (the four-parameter models) were chosen. The

Ratkowsky 3 equation has the lowest RSS2 of all four-

parameter models. Therefore, the Ratkowsky 3 model ap-

peared to be the most suitable to describe the specific growth
rate as function of temperature. The RSS2 of the Ratkowsky

3 model is even smaller than the RSS2 of the Schoolfield

model, although the Schoolfield model has two more param-

eters.

The Ratkowsky 3 equation shows an exponential drop of

the growth rate at high temperatures and shows no positive
values of the growth rate at temperatures above the maxi-

mum growth temperature.

Asymptote-temperature relations. The asymptote value as

a function of temperature was analyzed with various models

(Table 10). The asymptote data did not differ much in the

lower temperature range, and therefore a model with a

constant asymptote in the lower temperature range was also

taken into account (Ratkowsky 4). The first four models can

be rejected on basis of the F test. In this case, the Hinshel-

wood model is rejected also. None of the other models can

be rejected on the basis of statistics. While the Ratkowsky 4

model is not rejected, there is no statistical evidence that

there is an effect of temperature on the asymptote in the

lower temperature range. Although it seems that the asymp-

tote value increases with increasing temperature (Fig. 5), the

measuring error is too large to discriminate statistically. It is

possible that with more datum points or data with a smaller

standard deviation the effect of temperature on the asymp-

tote in the lower temperature range can be shown. Yet, since

for the measured datum points the Ratkowsky 4 model was

accepted statistically and had the lowest number of param-

eters (from the models which are accepted), this model was

Ln (N/No)

500 1000

time (h)

FIG. 7. Growth data and total model at 6.0"C (@) and 8.5eC (El,

A). Different symbols indicate different duplicates.
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TABLE 14. Parameters for models shown by equation 4, equation 9, and equation 11a

Lag time (X)
Growth rate (p.t,) (equation 4): Asymptote (A) (equation 9): (equation 11):

[b3(T- Tmi.)]2(l-exp[c3 (T - Tmax)]} b4{1 - exp[c4 (T - TAmax)]) nl (Tq
[b3(T-Tmin)12{1- ln(X) = ~~~~~~~~~~~~~~~~~~~~~~~~(T- q)

Parameter Estimate Parameter Estimate Parameter Estimate

b3 0.0410 b4 8.46 p 23.9
Tmin 3.99 C4 1.25 q 2.28
C3ax 40.161 TA 43.1
Tmax 43.7

ay=Aexp1 - exp ~L ( )+1-For the parameter b4, 21.58 - In (N0,) must be used if another inoculation level is used.

selected (Fig. 5). The parameter estimates of this model are
shown in Table 11.

In these experiments, the same inoculation level (5 x 105
organisms per ml) was always used. If it is assumed that the
final absolute number of organisms N, is constant (and
therefore not dependent on the inoculum level), the asymp-
tote is dependent on the inoculum level as:

b4= A = ln(NJNO) (15)
ln(N) = b4 + ln No = 8.46 + ln(5E5)

= 8.46 + 13.12 = 21.58 (16)
The parameter b4 (the final level reached at lower tempera-
tures) must be used [b4 + ln(5E5) - ln(NO) = 21.58 - ln(NO)]
if another inoculation level is used.
Lag time-temperature relation. To fit the lag time, a

logarithmic transformation was used, because the data
showed a larger measuring error at high numerical values
(the standard deviation was proportional to the mean value).
After the transformation, the distribution of measuring er-
rors at different temperatures was almost the same. Adair et
al. (1) fitted the logarithm of the inverse lag time data with
the Schoolfield model and the square root of the inverse of
the lag time data with the Ratkowsky model. After trans-
forming the model predictions back to lag times, they
calculated the RSS2 between their measured data and the
model predictions and they found, for instance, RSSRat =
16,186 and RSSSchOOl = 683. If they would have fitted the
logarithm of the lag time data with the logarithm of the
inverse of the Ratkowsky model (as it is proposed in this
report; equation 10) and transformed back to lag time, they

Ln (N/No)ic

8

60,'''25.0OC

0 20 40 60 80 100
time (h)

FIG. 8. Growth data and total model at 15.1°C (D, 0) and 25.0°C
(OL, 0). Different symbols indicate different duplicates.

would have found RSSRat = 632. Note that the fitting to the
models is done with different models but that the calculation
of the RSS values is done comparing lag time data (without
transformation) with model data. This is a striking example
to show the importance of the choice of the transformation
before fitting.
The logarithm of the lag time as a function of temperature

was described with different models (Table 12). In this case,
the first four models were rejected again. All other models
were accepted. The models with the lowest number of
parameters had to be selected. These were the models with
two parameters that are accepted statistically (Ratkowsky 1
and a hyperbola). Between these latter two models, the
hyperbola model had the lowest RSS2, and therefore this
model was selected (Fig. 6). The parameter estimates are
given in Table 13.
Growth curve-temperature relation. The different models

can now be integrated. Using equation 4, equation 9, and
equation 11 and the estimated parameters for these models
(Table 14), the growth rate, asymptote, and lag time at every
desired temperature can be calculated, and using equation 1,
a growth curve at that temperature can be described.

If the measured growth data are compared with the model
predictions, the resulting model can be evaluated (Fig. 7 to
10). The model describes the data adequately. The growth
rate at 6°C and the asymptote at 8.5°C are not very well
estimated. The measured growth rate at 6°C is a very small
value (0.0164 h-') and is estimated by the model as 0.00675
h-1. The lag time at 6°C is estimated well, which results in a

80

time (h)

FIG. 9. Growth data and total model at 18.2°C (D, 0, A) and
35.10C (OI, 0, A). Different symbols indicate different duplicates.
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Ln (N/No)
8

6

4 41.5 °C

2 42.8C

0

-2
0 10 20 30 40 50

time (h)

FIG. 10. Growth data and total model at 41.5°C (LI, 0, A) and
42.8°C (O,*, A). Different symbols indicate different duplicates.

reasonable prediction of the dynamic behavior over a long
period (almost 3 months). The asymptote at 8.5°C is not very
well estimated. The reason can be found in the fact that the
model prediction at 8.50C in Fig. 5 is greater than the datum
points. All the other predictions (also at the temperatures not
presented here) agreed very well with the measured values.
The model prediction is usually in between the duplicate or
triplicate observations.

Conclusions. We now have a model describing the growth
curve of L. plantarum in MRS medium including lag time,
growth rate, and asymptotic value. In these studies, a simple
medium was chosen to collect a large number of datum
points as it was the objective of this study to distinguish
between models. With the model proposed here, growth
over the whole relevant temperature range can be predicted.
In practical situations other media will be used and the
parameter values will have to be determined for that situa-
tion. Often a much smaller number of datum points will be
collected. This indicates again the importance of a small
number of parameters, because the solutions are more stable
and the estimates of the parameters have a larger number of
degrees of freedom using a model with a smaller number of
parameters. In our case (38 experiments, 18 temperatures),
models with a small number of parameters are selected. But
normally growth rates are measured at far less different
temperatures, so models with more parameters will not be
relevant. Since the models are not rejected with a large
amount of data (38 growth curves at 18 different tempera-
tures), it is not advisable to use models with a larger number
of parameters with many fewer datum points.
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