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Cytoskeletal Dynamics Simulation. The dynamic simulation presented in this work is

based on the Newton’s equations of motion.

i
i

i
i

U
dt

(t)d
m

r
f

r
∂
∂−≡=2

2

, [1]

where Ni ...,,2,1= , ( ) ( ) ( )ttt Nrrr ...,,, 21  are the positions of N  interacting particles and

( ) ( ) ( )( )tttUU Nrrr ...,,, 21=  is the potential energy of the many-body system. It is known

that closed Newtonian systems conserve the total energy and hence in the framework of

equilibrium statistical mechanics they correspond to the microcanonical ensemble which

is characterized by constant total energy E, constant number of particles N  and constant

volumeV . Biological systems however, usually operate at a constant physiologically

relevant temperature of approximately 300 K and therefore they are better described by

the canonical ensemble, which is characterized by constant number of particles N ,

constant volume V  and constant temperature T . Our cytoskeletal dynamic simulation

was performed in the context of the canonical ensemble.

In our coarse-grained simulation, the removal of water and other degrees of freedom

should introduce viscous dissipative forces and corresponding thermal fluctuation forces

on the coarse degrees of freedom. These forces will in principle have spatial-temporal

memory kernels (generalized Langevin equation and hydrodynamic coupling). The

details of the implementation will influence the value of τg. However, we chose not to

pursue this in our first paper on remodelable cytoskeleton. The reason is that there are

gross uncertainties in the biochemical details of the kinetics of protein-protein

dissociation and re-association, and the fact that these processes could be enzyme

catalyzed.  With these uncertainties present, the improvement brought by solving the

generalized Langevin equation is less significant, while the computational cost would

increase greatly. We believe the physics revealed in the coarse-grained simulation above

timescale τg is generic.



The Berendsen Thermostat. The Berendsen algorithm (1) was employed to regulate the

initial low temperature towards the desired temperature of 300 K and then to maintain it

constant throughout the numerical experiment. The method realizes a weak coupling of

the system to an external bath being at the constant desired temperature fT . The

Berendsen thermostat is a very simple and robust technique. It is based on the equations

( ) ifiii υTTζmFdtυd 1−+= , [2]

where Ni ...,,2,1= , iυ  is the particle velocity, iF  is the force acting on the particle, im  is

the particle mass, ζ  determines the strength of the coupling to the bath and T  is the

instantaneous thermodynamic temperature of the system calculated by exploiting the

equipartition theorem.

Virial Stress. The instantaneous total or volume averaged stress tensor in our

cytoskeletal dynamics simulation was calculated using the Virial formula (2)
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where  means canonical ensemble average in the original system configuration, Ω  is

the system volume, 2Ŝ  is the symmetrization operator defined as ( ) ( )jiijij GGGS += 21ˆ
2 ,

n
ip  and n

iq  are the i  components of the momentum  and the position of the n-th particle,

nm  is the mass of the n-th particle and U  is the potential energy of the system. The

above expression can be derived from the equation
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where TSEF −= , is the Helmholtz free energy, and η  is the supercell strain.
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