
Parameter Fitting

As mentioned in Materials and Methods, to estimate the initial guesses for the

parameter estimation for model 1, we used a hill climbing Monte Carlo algorithm.

For that we define an objective function

J(x) =

√

√

√

√

n
∑

i=1

(log(V (ti,x)) − log(V (ti))2,

where n is the number of data points available, x = [α, µ, µ1, τ, ρ, p, k]T is the vector

of parameters to be determined, V (x, ti) is the viral load, at time ti and parameters

x, predicted by our model and V (ti) represents the data value at time ti. For each set

of parameters, a numerical solution of the initial value problem, V (ti,x), is generated

via a modification of the Euler algorithm, designed to handle the delays of the model

(1). The parameter set that best fits the data occurs when J(x) is minimized over

the parameter region.

Initially, we choose the parameters randomly from an uniform distribution on a

predetermined interval. We first iterated the Monte Carlo algorithm 12,000 times

with the following parameter ranges α ∈ (0, 10−3), µ ∈ (0, 1), µ1 ∈ (0, 1), τ ∈ (0, 50),

ρ ∈ (0, 0.5), p ∈ (0, 500), and k ∈ (0, 10−9). From this process we select the set of pa-

rameters with smallest J(x). We then repeat the procedure (8,000 more iterations),

but the parameters are selected from a range around the current best estimate. That
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is, for a given parameter, x, the algorithm will look locally in a window between

x − a × x and x + a × x, where a has an initial value of 0.01. By varying the size

of this “window,” i.e. the a value, we can both search the parameter space and local

regions to minimize J(x), by making very small changes in the parameters. This al-

gorithm also has the advantage of avoiding stagnation in local maxima, because one

can increase the window width to find fits better than the local minimum of J(x).

Once we found the vector of parameters

x̂ = (α̂, µ̂, µ̂1, τ̂ , ρ̂, p̂, k̂)

that minimizes the functional J , we used these values as the initial guesses in a

standard Levenberg-Marquardt search algorithm (2).

We then calculated 95% C.I. for these estimates by bootstraping the fit residuals

(3, 4). Briefely, for each patient, let Υ̂ = {ǫ̂1, ǫ̂2, ..., ǫ̂n} be the set of residuals defined

by

ǫ̂i = V (ti) − V (ti, x̂(ti)),

for all data time points ti, with i ∈ {1, 2, ..., n}. Next, we define Υ∗ = {ǫ∗1, ǫ
∗

2, ..., ǫ
∗

n},

where, for each i, ǫ∗i are values drawn at random with replacement from the set Υ̂.

We form the sets V ∗

j = {V ∗

j1
, V ∗

j2
, ..., V ∗

jn
} of independent and identically distributed
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pseudo-observations, where

V ∗

ji
= V (ti, x̂(ti)) + ǫ∗i .

Numerically we generate 200 bootstrap samples V ∗

1 , V ∗

2 , ..., V ∗

200, and for each of them

we used the Levenberg-Marquardt algorithm above to calculate the correspondent

vector of parameters. From these, we directly calculate the 95% quantile confidence

interval for each parameter estimate.

For the alternative models shown below, we calculated a set of parameters consis-

tent with the data using the Monte Carlo algorithm described.

Alternative Models

To better understand the predictions provided by the model we examined the

sensitivity of our results to some of the basic assumptions of the model. We are inter-

ested mainly in two issues: the role of the refractory cell population and the nature

of both the cytolytic and noncytolytic immune responses.

In the first alternative model, we remove the R population, and assume that the

noncytolytic immune response causes infected cells to return to uninfected cells, ( i.e.,

T ∗

1 goes to T at rate ρ). The results of fitting this model to the data are shown in SI
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Fig 3. As uninfected cells increase the virus resurges giving rise to the prediction of

multiple viral peaks, which are not seen in the data.

In the second alternative model we remove the noncytolytic effect(i.e., ρ = 0).

There is no recovered population as we assume recovery is cytokine dependent. To

compensate for the generation of uninfected hepatocytes, the best-fit model predicts a

large amount of killing of infected cells, resulting in substantial decreases in total cell

numbers. This model is also unable to fit the viral load data, which starts increasing

at the end of the first phase of decline, due to generation of through proliferation of

new uninfected cells (see SI Fig. 4). This version of the model predicts unrealistic

reductions in liver size, of up to 90% (SI Fig. 4) because cytoltyic responses are the

main mechanism of viral clearance.

To analyze the immune response in more detail, we built three additional models.

In the third alternative model, we removed the cytolytic immune response, by setting

µ and µ1 to zero (SI Fig. 5). This model, with two fewer parameters than the original

model, was remarkably consistent with the data. Indeed, comparisons based on the F

test demonstrate that this model is statistically equivalent to model 1 for all patients

(P > 0.57). Given SI Fig 5 consistency with the data, we also explored a model
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with just a noncytolytic response, but independent from the effector cell dynamics.

That is, the term ρET ∗

1 becomes ρT ∗

1 . We show these fits in SI Fig. 6. This model

generates a monophasic decay in viral load (SI Fig. 6). Further, for patients p1 and

p4 the model does not fit the peak viral load nearly as well as model 1. However,

when we take into account that this model has only five parameters, instead of eight,

there is no statistically significant improvement in the sum of squared residuals in

model 1 compared with this simpler model by an F test (P > 0.27).

In another alternative model, we consider the effect of removing both the cytolytic

and noncytolytic effects by setting E to be zero. This is meant to mimic experiments

in which anti-CD8 monoclonal antibodies were used to remove the CD8+ T cells

responsible for the cytolytic and noncytolytic immune responses in HBV-infected

chimpanzees (5). The results show that the viral load reaches a set point at the peak

of the infection and the clearance does not occur (SI Fig. 7). This is similar to the

experimental results in CD8-depleted chimpanzees (5).

In the last alternative model we consider two populations of productively infected

hepatocytes (T ∗

1 , T ∗

2 , with single or multiple cccDNA nuclear copies, respectively).

Both types of infected cells can be killed by the immune response at the rate of µE

per cell. Both classes of infected cells proliferate in a manner similar to the unin-

fected cells. However, because cccDNA does not replicate upon cell division, when a
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T ∗

1 cell divides, it will produce one infected cell with one copy of cccDNA, keeping T ∗

1

unchanged, and one cell with no cccDNA (6), which we put into the T population.

Division of infected cells occurs at a growth rate r. Finally, T ∗

1 can also be lost due to

synthesis of new cccDNA and transition into the T ∗

2 class at rate z. The results are

similar with the ones in model 1 (SI Fig. 9). Although we consider this model to be

more biological, the results show no statistically significant improvement in the sum

of squared residuals in this model compared with model 1 by an F test (P > 0.92).

ALT Compared with Rate of Cell Killing

Because ALT is released when a hepatocyte is killed, we compared ALT with the

level of effector cells. High levels of effector cells will generate more killing and hence

more ALT. Alternatively, one can compare the level of ALT with the rate of killing

(µET ∗ +µ1ER). In SI Fig. 8 we make this comparison. Notice that when the rate of

killing rises so does ALT. However, when the rate of killing stabilizes, usually a few

orders of magnitude below its peak, the value of ALT decreases. Naturally, ALT is

also being cleared and this comparison neglects this feature. We have not modeled

ALT as this would introduce at least three new parameters (7).
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