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A comparison was made between mathematical variations of the square root and Schoolfield models for
predicting growth rate as a function of temperature. The statistical consequences of square root and natural
logarithm transformations of growth rate used in several variations of the Schoolfield and square root models
were examined. Growth rate variances of Yersinia enterocolitica in brain heart infusion broth increased as a

function oftemperature. The ability of the two data transformations to correct for the heterogeneity ofvariance
was evaluated. A natural logarithm transformation of growth rate was more effective than a square root
transformation at correcting for the heterogeneity of variance. The square root model was more accurate than
the Schoolfield model when both models used natural logarithm transformation.

The square root and Schoolfield models are frequently
compared for their ability to predict bacterial growth rate or
lag time as a function of temperature. Several variations
which involve the transformation of growth rate or lag time
to either a square root or logarithmic scale have been
developed for both models. The original formulation of the
square root model utilizes a square root transformation. A
logarithm transformation is frequently used with the
Schoolfield model (7). The statistical appropriateness of
these two transformations of growth rate and the conse-
quences of weighted regression were investigated.

Square root model variates. The square root model, pro-
posed by Ratkwosky et al. (6), is given as:

Vlk = b(T - Tmn) {1 - exp[c(T - Tmax)]} (1)
where k is the growth rate (time-'), b is a regression coeffi-
cient, T is the temperature (K), Tmm is the notional minimum
growth temperature (K), c is a regression coefficient, and Tm.
is the notional maximum growth temperature (K).

In equation 1, extrapolations above Tm. result in positive
growth rate predictions. A modification of the model which
eliminates this effect was proposed by Zwietering et al. (11).
The three square root model variates investigated in this
study are based on this modified model. The model variate as
proposed by Zwietering et al. is:

k = [b(T - Tmn)12{1 - exp[c(T - Tma)]} (2)
A square root transformation of equation 2 gives:

V/k = b(T - Tmi) {1 - exp[c(T - Tma,)} (3)
A natural logarithm transformation of equation 2 gives:

ln(k) = ln([b(T - Tm.)]2{1- exp[c(T - Tma)]}) (4)
Schoolfield model variates. The Schoolfield model is de-

rived from Arrhenius rate kinetics. The model was originally
proposed by Sharpe and DeMichele (9). The model is based
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on several simplifying assumptions: the growth rate of an
organism at a given temperature is assumed to be governed
by a single rate-controlling enzyme which is reversibly
inactivated at low and high temperatures; the total concen-
tration of the rate-controlling enzyme, in both the active and
inactive states, is assumed to remain constant and indepen-
dent of temperature; and the growth rate is a function of the
ratio of active enzyme to inactive enzyme (8).
The Schoolfield equation is given as:

T M-PA 1 1-

p(25c)-exp[R -1)
k- P(2soc)298 e LR t298 T) S

rAHL 1 1 ] AiH 1 1 (1 + exp LR tTi TJ+ exp LR tT, -T
where k is the growth rate (time-'), P(25-C) is the growth rate
at 25°C (time ), T is the temperature (K), R is the universal
gas constant (8.314 J K-1 mol-1), AHA iS the enthalpy of
activation of the reaction catalyzed by the rate-controlling
enzyme (J mol-1), AHL is the change in enthalpy associated
with low-temperature inactivation of the enzyme (J mole-'),
T1,2L iS the temperature at which the enzyme is 50% inactive
because of low temperature (K), AHH is the change in
enthalpy associated with high-temperature inactivation of
the enzyme (J mol-1), and T1,2H is the temperature at which
the enzyme is 50% inactive because of high temperature (K).
A square root transformation of equation 5 gives:
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A natural logarithm transformation of equation 5 gives:
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Statistical considerations. Regression analysis relies on
several stochastic assumptions. All observations are as-
sumed to have equal population variances. Homogeneity of
variance is important for obtaining an accurate regression
line. A second assumption is that each observation comes
from a normally distributed population. This assumption is
important when making inferences about populations. The
construction of accurate confidence intervals is dependent
on normally distributed populations.
Ratkowsky et al. called attention to the fact that Esche-

richia coli generation time data from Smith, cited by Rat-
kowsky et al., violates the assumption of variance homoge-
neity (7). A weighted least-squares regression analysis can be
used to compensate for heterogeneity of variance. An alter-
native approach which may correct for variance heterogene-
ity is a data transformation which changes the variance and
shape of the population distributions associated with each
datum point. A suitable transformation is one which results in
equivalent variances. The variances of transformed data can
be approximated by the following relationship (2):

(or,,)2 [f[(y)')] Cy.,2 (8)
dyi

where (u'i)2 is the variance of the ith transformed observa-
tion, f(yi) is the transformation applied to yi, yi is the ith
observation, and Cri2 is the variance of yi.
The variance of the natural logarithm of the ith k {Var[ln(kj)]}
can be estimated from the variance of the ith k [Var(ki)]
according to the following formula:

d2F d
Var[ln(k,)]=I- [ln(ki)] Var(ki)jk

[1]2 (9)

Var(ki)

ki2

where ki is the ith growth rate. The variance of the square
root of the ith k [Var(V/ki)] can be estimated from Var(ki)
according to the following formula:

Var(\k)= [d- (\ki)] Var(ki)

2

= [2j<] Var(ki) (10)

Var(ki)

4ki

Transformation of growth rates causes a weighting effect
on regression by disproportionally altering the magnitude of
each residual. Approximately the same parameter estimates
resulting from regression on a transformed model can be
produced with the untransformed model variate and an

appropriate weighting of the data. A weighting scheme
which will produce the same parameter estimates as a

natural logarithm transformation can be derived as follows:

Weighted SSE
[Var(ki)

(k I] (11)

where SSE is the sum of squares due to error, 1/Var(k') is the
i" weight, ki is the ith observed growth rate, and ki is the ith
predicted growth rate. When Var(ki) are all equal, the
weights [1/Var(ki)] are constant and will not affect parameter
estimation. Var(ki) in equation 11 can be replaced with
Var[ln(k)]k9 from equation 9 to give:

Weighted SSE = [Var[ln(ki)]kVi2 (k i i)]
(12)

In an unweighted regression of a natural logarithm-trans-
formed model, Var[ln(ki)] is assumed to be constant. There-
fore, it can be removed from equation 12 to give:

Weighted SSE = -[k- (k i)2] (13)

This weighting scheme yields approximately the same pa-
rameter estimates when applied to an untransformed model
as regression with an unweighted, natural logarithm-trans-
formed model.
A weighting scheme which will produce approximately the

same results as a square root transformation by using untrans-
formed data can be derived in a similar fashion as follows:

Weighted SSE = a(ki) J
g 2[~~~Var(ki) (ii

Replace Var(k,) with 4Var(\/ki) ki from equation 10:

Weighted SSE =
4-a (ki -k)2]
L4Var(\/k) ki

Remove 4Var(VJ):

Weighted SSE - (ki -

[(kg) ]

(14)

(15)

(16)

This weighting scheme yields approximately the same param-
eter estimates when applied to an untransformed model as
regression using an unweighted, square root-transformed
model.

MATERIALS AND METHODS
Strain. An isolate of Yersinia enterocolitica serotype 08

was generously provided by Mehdi Shayegani, New York
Department of Health. Stock cultures of Y enterocolitica
were maintained on brain heart infusion agar (Difco, Detroit,
Mich.) slants and transferred monthly.

Experimental procedure. The growth rate of Y enteroco-
litica in brain heart infusion broth (Difco) was experimen-
tally determined at 15 different temperatures, from 272 to 316
K. The following procedure was performed seperately for
each temperature. Y enterocolitica was transferred from a
stock culture to 5 ml of brain heart infusion broth, incubated
at 301 K, and grown to stationary phase (approximately 24
h). This culture, which had an approximate concentration of
109 CFU/ml, was used as the inoculum. The inoculum was
then diluted with brain heart infusion broth, and 0.1-ml
aliquots of a 10-2 dilution were delivered to a series (be-
tween 10 and 20) of tubes containing 4.9 ml of brain heart
infusion broth, which had been preincubated at the experi-
mental temperature. The inoculated cultures contained ap-
proximately 2.0 x 105 CFU/ml at time zero.
The inoculated cultures were incubated in a low-temper-

ature incubator (model 146A; Fisher, Pittsburgh, Penn.) at
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FIG. 1. Data and regression lines from square root model variates: untransformed equation 2 (A), square root transformation (equation 3)

(B), and natural logarithm transformation (equation 4) (C). Error bars represent +1 standard deviation of growth rate; * represents a single
growth rate determination; 0 represents an average of two or more independent growth rate determinations; k equals growth rate (h-1).

the desired temperature. At regular intervals throughout the
exponential growth phase, the concentration of a single
culture tube was determined by spread plating. Cultures
were diluted with a 0.1% peptone solution, and 0.1-ml
samples were plated onto brain heart infusion agar in dupli-
cate. Each tube was sampled only once. Plates were incu-
bated at 301 K, and colonies were counted after approxi-
mately 48 h. Sampling continued until the cultures reached
the stationary phase (approximately 109 CFU/ml).

Calculations. Growth rates were calculated from the slope

(m) of the linear portion of each growth curve by the
following formula:

/CFU
Alog l 1
m ml ~~~~~1

k= ~= x (17)
log2 Ahour log2

Variance of each slope [Var(m)] was calculated according to
the following formula:
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= (y,-x)2]
Var(m1) = - )]y-2 (18)

where yi is the ith observed concentration at time xi
[log(CFU/ml)], yi is the ith predicted concentration at time xi
[log(CFU/ml)], xi is the ith time (hours), xi is the mean time
(hours), and n is the number of datum points. Var(ki) was
approximated by the formula:

rMa) d2mi Va1Var(mi)
Var(ki) =Var ~~ = - Var(mi)= )2(19)log2J [mi oglog og2)
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FIG. 2. Residual plots for square root model variates: untrans-
formed equation 2 (A), square root transformation (equation 3) (B),
and natural logarithm transformation (equation 4) (C). k equals
growth rate (h-').

TABLE 1. Regression resultsa

Variate Model Equation SSEno.

Square root Schoolfield 6 0.0215
Square root 3 0.0227

In Schoolfield 7 0.412
Square root 4 0.356

Weighteda Schoolfield 5 0.00254
Square root 2 0.00396

a [Var(k)]-' was used for calculation of weighted sum of squares due to
error.

Var[ln(k)] and Var[V/k] were approximated by equations 9
and 10, respectively.
Curve fitting. Parameter estimates for the Schoolfield and

square root models were determined with Tablecurve 3.01
(Jandel Scientific, Corte Madera, Calif.), which uses the
Levenberg-Marquardt algorithm. Starting parameter values
for regression in the Schoolfield equation were calculated by
methods given by Schoolfield et al. (8). Initial parameter
estimates for the square root model were determined by the
procedure given by Ratkowsky et al. (6).
For weighted regression, growth rate was weighted by

1/Var(k). The weights used to calculate the weighted sum of
squares due to error are adjusted by the Tablecurve software
so that the sum of all weights equals the number of data
points (n = 21).

RESULTS AND DISCUSSION

In all cases in which the same transformation or weighting
procedure was used, the square root and Schoolfield model
variates produced similar regression results. The square root
model variates will be used to demonstrate the statistical
consequences of data transformation and weighting.

Figure 1A shows that Var(k) increases as k increases up to
310 K. The cause of this variance trend can be understood by
examining the experimental method used to determine k.
Cell concentration measurements were made from the lag
phase to the stationary phase (approximately 105 through
109 CFU/ml). At rapid growth rates, the organism reached
the stationary phase in less time than at slow growth rates.
When the growth rate is rapid, a small range ofx values is
used to calculate Var(m) (equation 18). This minimizes the
value of the denominator, which inflates both Var(m) and
Var(k) values, independent of any actual variation in exper-
imental measurements of cell concentration.

It might be expected that when growth rate begins to
decrease at temperatures above the optimum, Var(k) would
decrease. However, a reduction in sampling accuracy re-
sulted in an increase in Var(k) at temperatures above 310 K.
Y enterocolitica is motile at low temperatures and loses
motility at temperatures above 303 K (5). At temperatures
above 306 K, clumping of cells in the broth cultures made it
difficult to obtain representative samples and to count colo-
nies.
Weighted regression and data transformation were used to

compensate for the heterogeneity of variance. Each model
variate was evaluated primarily for its ability to correct for
the deviation from the assumption of homogeneity of vari-
ance. Figure 1B and C show the effects of the square root
and natural logarithm transformations on variance. The
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of the true growth rate at each experimental temperature. In
Fig. 2A, the shape of the residual plot correctly reflects the
variance trend. However, examination of the residual plots
in Fig. 2B and C might result in the erroneous conclusion
that the square root transformation results in more homoge-
neous variances than the natural logarithm transformation.
The regression results for all model variates examined are

summarized in Table 1. Because of the difference in scaling,
the SSE cannot be used to make comparisons between
models with different transformations. For square root-
transformed models, the SSEs for the square root and
Schoolfield model variates are very similar. For natural
logarithm-transformed variates, the SSE for the square root
model (0.356) is lower than the SSE for the Schoolfield
model (0.412). A weighted SSE is used to compare the
weighted regression models. The weighted SSE for the
Schoolfield model variate (0.00254) is lower than that for the
square root model variate (0.00396).
The shape of the prediction intervals around the regres-

sion function is an important point to consider when evalu-
ating models with different transformations or weighting.
Prediction intervals should reflect the ability to accurately
predict growth rate. Figure 3 shows the effect of weighting
and data transformation on prediction intervals after data
conversion back to the linear scale. An increase in the width
of the prediction intervals as k increases occurs with both the
square root and natural logarithm transformations and with
weighted regression. This is consistent with the increase in
variance as k increases.

Data transformation alters the shape of the population
distribution associated with each observation. Ideally, a
variance-stabilizing transformation should also result in nor-
mal population distributions. Normal probability plots,
shown in Fig. 4, were used as a diagnostic tool for assessing
the shape of the population distributions before and after
transformation. Interpretation of these plots must be made
cautiously, because of the small number of datum points. A
normal probability plot will be a fairly straight line when the
assumption of normality is met (1). Figure 4A indicates that
the growth rate populations may be skewed right. Bacterial
population distributions are frequently Poisson distributions
(4). When mean values are small, Poisson distributions are
skewed right. After conversion back to a linear scale, the
regression lines from both the natural logarithm- and square
root-transformed model variates have asymmetric prediction
intervals, with the larger portion above the predicted value.
This is consistent with right-skewed population distribu-
tions.

Conclusions. When the same transformation or weighting
procedure was applied, the square root and Schoolfield
models produced similar regression lines. Comparisons of
the two models gave different results, depending on the
variations of the models used. For the square root-trans-
formed variates, the square root model had a slightly higher
SSE than the Schoolfield model. However, for the natural
logarithm-transformed variates, the square root model had a
lower SSE than the Schoolfield model. This illustrates the
importance of choosing the appropriate data transformation
prior to evaluating the accuracy of different models.
The effect of data transformation on regression should be

evaluated independently for each data set. If the variance of
growth rate increases as the magnitude increases, either a

square root or a natural logarithm transformation may cor-
rect for the variance heterogeneity. Both transformations
inflate the variances of data at the low end of the scale. This
effect is more extreme with the natural logarithm transfor-
mation (3). For our data set, there was considerable discrep-
ancy between variances associated with large growth rates
and those associated with small growth rates. The natural
logarithm transformation eliminated this variance trend. For
Smith's data, cited by Ratkowsky et al., the variance trend
was less drastic and a square root transformation of growth
rate was sufficient for removing the variance trend (7).
The growth rate of bacteria in food is dependent on many

factors, which include storage temperature, pH, water ac-
tivity, salt concentration, preservatives, oxidation/reduction
potential, processing and packaging, and the presence of
competitive microflora (10). The complex interaction of the
effects of these factors on bacterial growth makes the
development of accurate models for bacterial growth rates in
foods substantially more complicated than that for a single
organism in defined media. One would expect the Var(k) in
food systems to be larger and more heterogeneous. Weight-
ing or data transformation may be able to correct for the
variance heterogeneity. The accuracy of the regression
function prediction limits should be considered when select-
ing a model variate.
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