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1 The information matrix for discrete times

In the main paper, we assumed that distribution times followed a Weibull dis-
tribution which is a continuous distribution. However, our infection time data
is discretized into whole days, and the likelihood must be discretized to reflect
this.

To calculate the maximum likelihood (ML) estimate, substitute W (t; —
ti;k,m) for w(t; — ¢;;k,m) in equation (6) of the main paper. The Weibull
cumulative distribution function (CDF) is given by

W(T;k,m) =1—exp[-(nT)"], (A1)

and for every occurrence of w(t; — t;; K, 1) we substituted

wi; =W(T+1/2;6,n) —W(T —1/2;k,1) (A.2)
= exp [~ (n(T = 1/2))"] — exp [= (n(T + 1/2))"] (A.3)
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To calculate variance-covariance matrix in equation (8) of the main paper,
we use the standard relationship

V() =J10) (A.5)
where J(6) is the observed information matrix given by
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with 6 = (k,m) and In L the log-likelihood with the cumulative density for the
Weibull substituted.



To calculate J it is first necessary to evaluate the first and second derivatives
with respect to £ and 7, given by
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With T% = T 4 1/2, we have
Brex = — (nTF)" In (nT*) (A.12)
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Therefore the entries of the information matrix are
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Once this is done standard formulae for a) the inverse of a two-by-two matrix
and b) the conditional normal distribution, can be used to calculate V = J~*
and generate draws from the bivariate normal distribution. For completeness,
we give each of these results below.

2 Inversion of the information matrix

The variance-covariance matrix is obtained by inverting the information matrix.
The general inversion formula for a 2 X 2 matrix

A B
M= ( 4 D) (A.20)
is given by
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3 Marginal and conditional distributions

The distribution function of a bivariate normal distribution is given by
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The variance-covariance matrix V determines the variances and correlations
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The marginal probability for any x; is given by the univariate normal distri-
bution
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The conditional probability of zo given that z; = a is also a normal distri-
bution, but with mean ji and variance 02, which are given as
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