	A	λ	k_c
Resting			
1	0.8 ± 0.2	1.5 ± 0.4	8 ± 4
2	0.9 ± 0.3	1.6 ± 0.5	5 ± 3
3	0.9 ± 0.3	1.5 ± 0.5	8 ± 15
4	0.9 ± 0.3	1.6 ± 0.6	6 ± 4
5	0.8 ± 0.2	1.6 ± 0.4	5 ± 2
6	1.0 ± 0.2	1.4 ± 0.3	8 ± 6
Tapping			
1	0.9 ± 0.1	1.4 ± 0.2	9 ± 4
2	0.8 ± 0.2	1.7 ± 0.4	5 ± 1
3	0.8 ± 0.3	1.7 ± 0.5	5 ± 2
4	0.8 ± 0.3	1.7 ± 0.5	6 ± 4
5	0.9 ± 0.2	1.5 ± 0.5	10 ± 14
6	1.0 ± 0.1	1.2 ± 0.3	14 ± 20

Table 2. Parameters of exponentiallytruncated power law degree distribution

The degree distribution of all networks at all frequency bands and both behavioral states was best described by a truncated power law, given in the form $P(k) \sim Ak^{\lambda-1}e^{k/k_c}$, where A is the coefficient, λ describes the power law, and k_c is the exponential parameter. These three parameters are given here along with their standard deviation and show a large scaling regime as depicted in the bottom row of Fig. 1.