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1 Materials and Methods

1.1 Sample and MEG Data Acquisition. Twenty-two healthy right-
handed volunteers (12 male, 10 female) with mean age = 31.0 ± 6.5 (SD)
years were enrolled in the study. Eleven subjects (6 male, 5 female) per-
formed a finger-tapping task, whereas 11 other subjects matched for age (P
= 0.93, t test) and gender were used to procure resting data. A history of
neurological or psychiatric disorders was excluded by clinical interview and
examination. All subjects gave informed consent in writing. The study was
ethically approved by the National Institute of Mental Health (NIMH) Insti-
tutional Review Board and conducted in accordance with National Institutes
of Health (NIH) guidelines for research involving participation of human sub-
jects.

Magnetoencephalographic (MEG) data were acquired at the NIMH using
a 275 channel CTF MEG system (VSM MedTech Ltd., Coquitlam, BC,
Canada), excluding one faulty sensor in the right frontal area (MRF43).
Readings were taken at 600 Hz. Low frequency background noise was fil-
tered using the third gradient. All MEG time series were mean subtracted
and corrected for line noise using a 0.3-Hz-wide notch filter.

For the finger-tapping task, visual stimuli were presented at 1.2 Hz for 10.24
s by using a custom-built mechanical sensor. The stimulus was a visual
flicker (a pulsating dot) that was tracked by a photodiode. Motor responses
(taps of the right index finger) were registered using in-house software. This
procedure was repeated four times for each subject.

In the resting state, data were acquired using the same MEG system in a
single session while subjects remained quietly immobile with eyes open for 30
minutes. For the purposes of comparison to the shorter motor task-related
data, four data segments of 10.24 s duration were sampled from the resting
time series at equally spaced intervals excluding data acquired in the first
two or last two minutes.

1.2 Wavelet Analysis and Correlations. Wavelet analysis, unlike Fourier
analysis, allows both time and frequency localization of a signal; see Percival
& Walden (1) for a comprehensive text on time series analysis using wavelets
and Bullmore et al. (2) for a review of applications of wavelets to analysis of
human functional MRI (fMRI) data. Wavelet correlation analysis is a linear
calculation (1) and therefore does not allow quantization of the similarity be-
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tween information at different frequencies and time lags. In order to include
nonlinear effects, one has several options including a time delay embedding
as described in Section 3.1 (3), a reconstruction of the wavelet transform
based on the Gibbs function (4), or a combination of techniques (5).

All time series were decomposed using the maximum overlap discrete wavelet
transform (MODWT), with the Daubechies 4 wavelet, because of its abil-
ity to decompose arbitrary signal lengths (6, 7) (Cornish, C. The WMTSA
wavelet toolkit for MATLAB). Because MODWT is a circularly shifted re-
dundant transform, the number of detail coefficients at all scales was constant
(= 6144). Scales 1–6 collectively represented physiological activity in the fre-
quency range 1-75 Hz: scale 1 (corresponding approximately to the classical
EEG γ band = 37.5–75 Hz); scale 2 (∼ β) = 18.7–37.5 Hz; scale 3 (∼ α) =
9.4–18.7 Hz; scale 4 (∼ θ) = 4.9–9.6 Hz; scale 5 (∼ high δ) = 2.4–4.8 Hz;
scale 6 (∼ low δ) = 1.1–2.2 Hz.

To quantify the strength of association at specific frequencies between MEG
signals in different brain regions, we calculated the absolute value of the
correlation between wavelet coefficients for each pair of sensors at each scale
of the transform (see Appendix in Achard et al. (8) for mathematical details).
This resulted in a set of 48 symmetric (275×275) wavelet correlation matrices:
one for each scale (6), for each experimental run or segment of resting data
(4), and in each behavioral state (2), for each subject. The four correlation
matrices at a given scale and state were then averaged to give 6 scale-specific
matrices for each of the two behavioral states in each subject.

To convert these continuous wavelet correlation matrices to an undirected
graph G, we set to zero any correlations with value less than a threshold τ
and set to one any correlations greater than τ . This operation transforms
each wavelet correlation matrix to a binary adjacency matrix A which can
be graphically represented as a network comprising nodes (brain regions)
connected by an edge or line if the wavelet correlation between them was
greater than τ . Further details on the choice of threshold are provided below.

1.3 Estimation of Small-World Parameters. The key parameters for
a small-world analysis of an undirected graph are the degree, the clustering
coefficient and the minimum path length.

The average degree 〈k〉 of each graph was found by summing the edges be-
tween nodes throughout the whole brain network and dividing by the total
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number of nodes N , i.e., 〈k〉 = 1
N

∑N
i=1 ki where ki is the number of other

nodes that node vi is correlated with at magnitude greater than τ . The prob-
ability distribution for degree can be empirically estimated from the observed
degrees of each node and various possible forms for the degree distribution
can be comparatively evaluated in terms of their adequacy to account for the
data. Small-world networks may have degree distributions best described by
exponential, power law or exponentially-truncated power law degree distri-
butions.

The average minimum path length L between any two nodes in the system
was determined using Dijkstra’s algorithm (9, 10) which finds the smallest
number of edges that must be traversed to define a path between any two
nodes.

The clustering coefficient was first introduced by Watts and Strogatz (11)
as a metric to determine the inter-connectedness of a node’s neighbors. It
can be constructed by letting m(vi) be the number of opposite edges of a
node vi, t(vi) be the number of potential opposite edges of vi, defined as
t(vi) = ki(ki − 1)/2 while the degree ki of the ith node is greater than 2

(12). The clustering coefficient of node vi is then defined as c(vi) = m(vi)
t(vi)

while the clustering coefficient C of the graph is the average of the clustering
coefficients of all nodes vi, C = 1

N

∑N
i=1 c(vi).

In order to determine whether the experimental networks have small-world
topology, a comparison must be made to random graphs with the same num-
ber of nodes and average degree. Random graphs with a Gaussian degree
distribution will have clustering coefficients given by Crand = <k>

N
(13). The

path lengths of a random graph are given by Lrand = ln N
ln (<k>)

(13). A small-
world network will be characterized by an average clustering greater than a
random network, and an average path length approximately equivalent to a
comparable random graph, i.e. it will have a σ value greater than 1 where
σ is defined as σ = C

Crand
/ L

Lrand
(14). This comparison between experimental

and random graphs can only occur in the range where these equations hold
true for random graphs, i.e . where 〈k〉 � ln N (8, 11, 15). One limitation of
this comparison is that we have assumed a Gaussian degree distribution in
the random graphs while our experimental graphs have a truncated power-
law degree distribution. However, a proper method for the generation of a
random network with a given degree distribution has not yet been shown
(16).
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Therefore, we chose our threshold τ using three constraints: (i) the false dis-
covery rate (which controls the expected proportion of false positives among
suprathreshold correlations) must be less than 5%; (ii) the average degree
must be no smaller than 2 ∗ ln(N) to allow use of classic graph theory to
estimate the small-world scalar σ; and (iii) at least 99% of the nodes of the
brain must be connected since we were interested in global brain dynamics.
Within these constraints, we chose the highest threshold possible to opti-
mize the strength and thus biological plausibility of connections (17). A
high threshold reduces the number of false positive edges in the graph and is
consistent with the known relative sparsity of anatomical connections in the
brain (18–25).

The chosen value of τ varied somewhat from one network to another but was
typically τ > 0.4. To exclude the possibility that results were unacceptably
affected by the precise choice of τ we also estimated σ in networks thresh-
olded with several values of τ and found evidence at all scales of small-world
topology σ > 1 in networks thresholded by approximately 0.4 ≤ τ ≤ 0.8.
Thus, the thresholded networks retain much important information about
the original system. However, future work will further analyze weighted net-
works which have not been thresholded, especially for cases in which the
correlation distributions or mean are distinct between the two states being
studied.

1.4 Characterization of Network Hubs. Creating graphical depictions
of the brain using these threshold values, we can determine which nodes are
connected to the largest number of other nodes, i.e. which nodes are “hubs.”
We define a hub as a node that has a degree larger than the average degree
of the network (26, 27). The topology and average spatial location of these
hubs in several frequency bands can be seen in Fig. 2, which shows the
degree of all nodes as a color distribution in several frequency bands. For
hub distributions in both states and all frequency bands, see Fig. 6.

Hubs may be further classified according to the length and number of their
connections as provincial, connector, or kinless hubs (26) (see Fig. 7 for
a schematic). A provincial hub (P) will have up to 1/6 of its connections
outside of a localized neighborhood of radius r around itself. A connector
hub (C) has 1/6-1/2 of its connections outside r, whereas kinless hubs (K)
have more than 1/2 of their connections outside r.
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We note that if r is large enough (rmax ∼ 50 cm, i.e., the diameter of the
brain), provincial hubs dominate, whereas as r becomes small, connector and
kinless hubs form the majority (see Fig. 4). The radius at which the number
of provincial hubs (] P ) in a network is equal to the number of connector hubs
(] C), gives a characteristic length scale ζ of the network. For distributions
of provincial and connector hubs in both states in all frequency bands, see
Fig. 8.

It is also interesting to identify topologically pivotal nodes which might rep-
resent bottlenecks in information flow between modular subsystems (28). If
a pivotal node is eliminated the subsystems will no longer be able to commu-
nicate. Pivotal nodes have high betweenness scores (29–31) and betweenness
is defined more formally as Bv =

∑
1

(N−1)(N−2)

givj

gij
, where gij is the num-

ber of geodesic paths (i.e., on the network’s surface) between nodes i and
j, givj is the number of paths between i and j passing through node v, and
N is the number of nodes (32–36) (see Fig. 9 for betweenness spatial distri-
butions across all frequencies in both states and Fig. 13 for the numerical
distributions). The algorithm used to calculate betweenness centrality first
computes the matrix gi,j as gi,j = Aαi,j , where A is the adjacency matrix and
α is the matrix of shortest paths found using the Dijkstra algorithm, giving
the number of paths between i and j that have a length αi,j, i.e. the shortest
possible length [the use of the power of the adjacency matrix is discussed
in (36)]. The shortest possible distance between i and j, which also goes
through node v is given by dv(i, j) = αi,v +αv,j, where αi,v gives the shortest
distance between i and v, and αv,j gives the shortest distance between v and
j. If dv(i, j) is equal to αi,j, then a path can go through v on its way from
i to j while remaining a shortest path (i.e., the Bellman criterion). In this
case, givj is given by gi,v ∗ gv,j (36) and describes the number of shortest
paths between i and j that pass through v. Other algorithms for estimating
betweenness centrality are possible (e.g., ref. 36) including those not based
on shortest paths (37). Other types of centrality including information cen-
trality, straightness centrality and closeness centrality have been shown to
be useful measures of network structure (e.g., ref. 38).

1.5 Synchronizability. We can consider the dynamical consequences of an
arbitrary network topology by first defining the diagonal matrix D whose
elements are equal to the degree of the respective nodes: D(i, i) = ki, where
ki is the degree of the ith node. We can define the Laplacian matrix of the
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graph as L = D − A where A is the adjacency matrix, i.e., the thresholded
correlation matrix where 1s represent a connection, 0s represent no connec-
tion, and the rows and columns represent nodes. Although neural assemblies
in the brain are likely to be coupled non-uniformly, results from uniformly
coupled systems provide generalized dynamical tendencies of the system.

We suppose each individual node can be coupled to each other node through
some equation of motion: ẋi = F (xi)+φ

∑N
j=1 LijH(xj), i = 1, ...., N , where

ẋi is the activity of the ith node, φ is a uniform coupling strength, H(x) is an
output function, Lij is the Laplacian matrix, and ẋ = F (x) is the motion of
an individual node independent of the system. A synchronized state of the
system will then be characterized by {xi(t) = x∗(t),∀ i}. Because the rows
of L have zero sum, the smallest eigenvalue λ1 is zero and, if the network
is connected, λ2 > 0. In fact, the magnitude of λ2 is a measure of the
connectivity of the graph. Further, because the coupling between these nodes
must be large enough to synchronize the least coupled oscillators and small
enough to just synchronize the highly coupled oscillators, the synchronization
threshold will depend upon λ2 and λN (39). Thus, in addition to connectivity,
we can determine the synchronizability of a specific network, defined as S =
λ2

λN
where λN is the largest eigenvalue of the Laplacian matrix, and λ2 is the

second smallest eigenvalue of the Laplacian. Fully synchronized systems of
various types of oscillators have 0.01 < S < 0.2; systems with S ∼ 0.01 are
close to the transition from global order to disorder (40).

1.6 Intuitive Correlates of Graph Theory Parameters Used. Graph
theory parameters can seem confusing and obtuse. However, social networks
hold many analogies to graph theory parameters. For example, the average
degree 〈k〉, i.e., number of connections emanating from or entering into a
node, can be likened to the number of friends a person has. Person1 is
connected to Personi, Personj, etc by the “edges” of friendship, and therefore
the “degree” of Person1 is equal to the number of friends they have. Further,
the clustering coefficient, C, represents in graph theory the probability that
if node1 is connected to nodei and nodej, then nodei and nodej are also
connected to each other. In the social construct, C would therefore represent
the probability that if Person1 has two friends, Personi and Personj, then
Personi and Personj are also friends with each other. Similarly, L describes
how many nodes must be passed through to get between a randomly assigned
start, ni, and finish, nf . This is similar to the Six Degrees of Kevin Bacon
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in which any actor (i.e. the start node ni) can be linked through their
film roles to Kevin Bacon (i.e., the end node nf ) through at most six links
(in graph theory terms, L = 6). This effect of being able to condense the
entire social network of the film industry into just a few links is known
as the “small-world” effect, and can be quantitatively compared to random
networks via the parameter σ. The synchronizability, S, represents how likely
it is that all nodes will produce the same wave pattern based on the topology
of connections. This is similar to asking if your local group of friends is
connected closely enough that if you initially all talked about different things
at a party, by the end of the evening, you all were only talking about one
thing in a single large group rather than in small cliques.

2 Supporting Results

2.1 A Note on the Synchronizability Measure. The spectrum of the
eigenvalues of the Laplacian matrix has been used to illuminate dynamical
properties and motifs of networks (41–43), including the synchronizability
(40, 44, 45). To determine the maximum synchronizability possible in a net-
work (i.e. the threshold above which synchronization can occur) we have used
the methodology of the Master Stability Function as proposed by Pecora and
Carroll (46, 47) which determines the threshold synchronizability at which
a system of coupled oscillators will globally synchronize. This method has
been used to show the relative synchronizability of small-world networks with
respect to their regular lattice counterparts (32, 39, 48). This methodology
has four assumptions: (i) The coupled oscillators (nodes) are all identical,
(ii) The same function of the components from each oscillator is used to
couple to other oscillators, (iii) The synchronization manifold is an invariant
manifold, and (iv) The nodes are coupled in an arbitrary fashion which is
well approximated near the synchronous state by a linear operator.

Synchronizability of these systems is found by computing the Laplacian spec-
trum (32, 40, 49), which is defined by the topology of the network in question
(i.e., by using the adjacency matrix). Under these assumptions, it was proven
that the ratio of the second Laplacian eigenvalue (θ2) to the largest Laplacian
eigenvalue (θmax), i.e., (S = θ2/θmax), was greater than the synchronizability
at which the system globally synchronizes (S > Sglob = 1/β) (where β is
determined by the Master Stability Function) (40). With these assumptions,
several oscillator systems have been studied (Lorenz, Rossler, double scroll,
etc.) (40), and a range of Sglob has been identified as 0.01–0.20 depending
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on the oscillator chosen. Therefore, to be most stringent, a network will be
synchronizable if S > 0.20; a network is not synchronizable if S < 0.01.

The synchronization that we have found for our networks is at or below the
lowest Sglob known, i.e. S < 0.01. To suggest what this may mean, we look
again at the four assumptions above.

(i) First, our observables are MEG time series which reflect summary activity
of relatively large neural assemblies. Clearly, therefore, a representation by
identical oscillators is a simplification. However, because our primary interest
is in the scale invariance of synchronizability, an identical oscillator system
may be a good first-order approximation, especially since we use wavelet
decomposition to restrict the topology to a given band, thereby constraining
the main order parameter of an oscillator, and experimental data in our
paradigm that could guide a selection of different oscillator parameters were
not available.

(ii) This is a simplification in the interest of theoretical tractability that does
not hold in the brain in general. However, our networks are very sparse, and
we only allow highly correlated sensors to be “connected,” i.e., to be present
in our adjacency (and therefore Laplacian) matrix, which implies that this
approximation may be reasonable, since we study a binary adjacency matrix
after thresholding, and it is again not clear how data that would guide a
more realistic estimate of coupling strength could be derived in humans in
vivo.

(iii) This guarantees the existence of a synchronization hyperplane in the
phase space.

(iv) Because we are studying linear correlations between brain areas as func-
tionally significant, this assumption for linear coupling is true to our data.

Therefore, we suggest that these networks cannot globally synchronize no
matter how high the coupling (40). This is the first analysis of synchronizabil-
ity of the MEG sensor system, and, although we have used generalizations,
this work can be followed up in the future by studying varied weightings
(50), determining possible hierarchies in the topology (51), and determining
which nodes are most important to S via edge removal (52).

2.2 Distance Distributions. The categorization of hubs into provincial,
connector, and kinless hubs gave strong evidence for a characteristic spatial

9



Small-world brain networks in human MEG D. S. Bassett et al.

length scale of connections dependent on task in several frequency bands. To
support this result, we further computed the distribution of spatial distances
comprised by all edges in all networks. More specifically, we created a list
of the spatial edge lengths for the networks in all four runs for each of the
11 subjects at a particular wavelet level, and concatenated them together.
We show the histogram of these concatenated lists in Fig. 10. It is evident
that the larger characteristic length scale found in the γ, β, and α bands is
robustly present in these distance distributions as well.

2.3 Degree Distribution Fits. We claim in the main article that the
degree distributions found in our data in both tasks and all wavelet levels
are best fit by an exponentially truncated power law (P (k) ∼ Akλ−1ek/kc)
with the values of the three parameters given in Fig. 1 and Table 2. Two
other fits were tested, including the power law fit (P (k) ∼ Akα and the
exponential fit (P (k) ∼ Aeβ). To quantify the strength of each fit, Akaike’s
Information Criterion was calculated and corrected for the small number of
data points (a.k.a. AIC) (53). Fig. 5 shows the value of AIC at each wavelet
level for all three fits where the AIC of the exponentially truncated power
law is lower than the AIC for the power law and exponential fits for all levels,
indicating that the exponentially truncated power law provides a better fit
to the empirical degree distribution.

2.4 Effect of Spatial Proximity of Sensors on Observed Correlations.
The correlation between wave patterns is less problematic in MEG sensors
than it is with EEG electrodes. However, it is an issue which can not be
perfectly described without fully reconstructing all statistically significant
MEG sources and their distance and orientation from the surface. However,
as a diagnostic test, we have calculated the correlation between each pair of
sensors (all correlation values were placed in a vector “Corr”) as well as the
Euclidean distance between each pair of sensors (all Euclidean distances were
placed in a vector “EucD” in the same order as the “Corr” vector). We then
calculated the mutual information between the vector of correlations and
the vector of distances, describing the percentage of the correlation matrix
which can be predicted by the Euclidean distances between sensors. This was
performed for both the resting and tapping data in each of the six wavelet
bands, presented in Fig. 11. At the most (in the γ band of the resting data),
the spatial proximity of sensors is never likely to accounted for no more than
18% percent of observed correlations.
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2.5 Scale Invariance of Network Parameters. It was clear by pre-
liminary inspection of network parameters estimated at different scales of
the MODWT that most global topological and dynamical parameters were
conserved within narrow bounds over all scales. To define more precisely the
scaling regimes for each parameter, we fitted a simple linear regression model
for the effect of scale on each of the parameters of interest and tested if it
was significantly > 0. If so, we iteratively identified the scale corresponding
to largest residuals of the fitted model, removed this scale from the model,
and reestimated the model until the effect of scale was not statistically sig-
nificant. This procedure was used to define the extent of scale invariance,
or the scaling regime, for each topological and dynamical parameter in each
behavioral state.

We have claimed that the topological parameters which we have studied are
conserved within narrow bands over all scales as demonstrated in Fig. 1. The
error bars in these plots give confidence intervals of standard errors of the
means and are not derived from the subsequent linear regression procedure.
Furthermore, the parameters are statistically similar to each other across
frequency bands and yet their range is significantly smaller than their possible
range. In order to determine the possible range for graphical parameters, we
have calculated the clustering coefficient, average path length for a regular
ring network as described in (11). From ref. 11, we know that C/Creg

and L/Lreg may range from 0 to 1, yet in our data C/Creg ranges from
approximately 0.65 to 0.75 and L/Lreg ranges from approximately 0.31 to
0.38. We have then performed the rewiring technique described in ref. 11 by
randomly rewiring a percentage P of nodes and calculating the C and L. For
the range of values of C and L, we determined the small-world parameter σ
as C/Crand

L/Lrand
. The maximum σ for this system is ∼ 38, whereas the minimum

is ∼ 1. The experimental range between 1.7 and 2.0 is significantly smaller
than the possible range between 1.0 and 38.0. The possible range for k was 0
to 274, and the experimental range was 12.2 to 16.9. The synchronizability
of a network is defined as λ2/λmax. The only requirements for these two
variables is that 0 < λ2 < λmax. Therefore, S may lie anywhere between 0
and 1, while the experimental values found for S lie between approximately
0.0052 and 0.0102 (see ref. 54 for the effect of topology on synchronizability).
The percentage of the possible range taken up by the experimental range for
these parameters is 10 percent for C, 7 percent for L, 0.8 percent for σ, 1.7
percent for k, and 0.5 percent for S. Therefore, by describing our bands as
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narrow, we mean that the experimental range is 10 percent or less of the
possible range of each of these parameters.

2.6 Correlation of Graph Theory Parameters. It has been suggested
some graph theory parameters are highly correlated, and therefore if one
parameter shows a certain behavior (such as scale invariance), other param-
eters may as well. For example, the average clustering coefficient C and the
average degree k may be correlated (55), and C and L may as well (56).
We have looked for inherent correlations between graph theory parameters
in our work. We create a list of all the values of C for all four runs and
all eleven subjects at a particular frequency and state (44 numbers in all)
and calculated the correlation between this list and a similar list for, say,
L. The parameters which we studied were τ , k, L, C, σ, ζ, and S. Cor-
relation matrices were calculated for each state and each frequency, making
12 matrices in all. To facilitate visualization, we have depicted in Fig. 12
the parameters as nodes and the thickness and color of connections between
them give the value and sign of the requisite correlations. It was found that
state and frequency band differentially effect the correlations between these
parameters in this experimental context.

3 Historical Context of Brain Complexity

Interest in the complexity of the brain’s time-dependent activity such as is
measured using EEG and MEG grew alongside the development of nonlin-
ear dynamics and chaos theory. Classic measures used to characterize the
complexity of EEG and MEG include the correlation dimension, Lyapunov
exponents, and entropy (see ref. 57 for a detailed review). The correlation
dimension is a measure of the dimensionality of the space occupied by a set
of random points and is calculated by reconstruction of a time series using
time-delay embedding (58, 59). The largest Lyapunov exponent as well as
the Lyapunov spectrum describe in general the stability of the system’s dy-
namics. The rate of information loss of a system’s dynamics is its entropy
which is equal to the sum of all positive Lyapunov exponents (60, 61). For
use in neuroscience applications, the approximate entropy (ApEn) as first
developed by Pincus is often applied, assigning to each time series a positive
number whose magnitude is proportional to the amount of randomness in
the series.

3.1 Nonlinear Complexity in EEG and MEG. Nonlinear structure, such
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as is measured by the parameters above, has been shown to be present in
EEG/MEG and in the interactions between separate EEG times series (62–
64). Further, the effect of aging has been shown to increase the correlation
dimension (65). It has been suggested that deeper sleep stages are associated
with lower complexity (for example, refs. 66–68). Furthermore, anesthetic
depth can be estimated by the magnitude of the correlation dimension (for
example, refs. 69–71). Work has been done to show that seizure activity
is highly nonlinear (72, 73) and low-dimensional (74, 75), whereas interictal
EEG is only slightly nonlinear and high-dimensional (76) and furthermore,
that nonlinear measures may be used to detect and predict seizures (for
several reviews, see refs. 77–79). Several emotional and psychological states
differentially effect the nonlinearity of EEG/MEG signals and connections
(see, for example, refs. 80–82). Many forms of dementia have been associated
with lower complexity (for two reviews, see refs. 83 and 84), whereas normal
cognition, especially when applied to a task, has been associated with higher
complexity (for example, see refs. 85–87).

3.2 Neural Complexity vs. Nonlinear Complexity. In all of this
previous work, complexity is directly related to how random the system or
process of the system is. However, recent definitions of ”neural complexity”
focus more on the intermediate state between randomness and order (first
defined in ref. 88, a review given in ref. 89, and specific applications given in
refs. 90 and 91). Neural complexity in this sense expresses the portion of the
entropy of the system that can be accounted for by the interactions among its
elements (92) and reflects a neural system’s capacity to integrate distributed
information (93). Beyond time series analysis, graphical networks which
show the greatest neural complexity are small-world networks, i.e., between
randomness and order. Therefore, the current interest in the small-world
topology and the topological synchronizability on the border between order
and disorder are graph theoretical correlates to “neural complexity” but not
complexity in the sense of the nonlinear measures given above. Instead, the
correct graphical correlate to the nonlinear time series measures given above
would be a small average path length and small clustering, i.e., a random
graph.

3.3 Graph Theory vs. Times Series Analysis. Besides the difference
in the inherent meaning of the two definitions of complexity, there exists
a very basic difference in the level of analysis in the two cases. Nonlinear

13



Small-world brain networks in human MEG D. S. Bassett et al.

characteristics of the brain can be studied in a particular time series or in
the interaction between two different time series. However, in order to apply
graph theory to the brain, we first take the time series and define some con-
tinuous measure of association between any pair of time series (in our case,
we have used wavelet correlation). From this continuous measure, we use
a threshold to derive a binarized network, or graph to which graph theory
methods can be applied. Thus, the dynamics of a system’s time series can
be significantly different than the dynamics a system is capable of due to its
connection topology. Despite this inherent difference in the analysis meth-
ods and the information that can be extracted from them, it is possible to
use a nonlinear measures such mutual information and the synchronization
likelihood as the continuous measure of association from which the graph is
finally derived.
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