
Finding sets of annotations that frequently co-occur in a list of genes  
 
In this document we illustrate, with a straightforward example, the GENECODIS 
algorithm for finding sets of annotations that frequently co-occur in a gene list. 
 
Given a list of genes, the first step is to retrieve annotations for each gene from the 
selected databases. 
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In this example, KEGG and GO Cellular Component annotations have been associated 
to a set of yeast genes. This set of annotated genes can be treated as a transaction 
database, in which genes are transactions and annotations are itemsets using the 
classical nomenclature in the field of association rules. This transaction database can be 
mined to extract frequent sets of annotations that co-occur in at least x genes. 
 
Given a minimum support value, let say x=3, the first step of the algorithm is to extract 
all annotations that occur in at least 3 genes (frequent 1-itemsests);  
 

Annotations # genes genes
GO:0005759 8 ACO1,CIT1,CIT3,FUM1,IDH1,IDH2,KGD1,KGD2
GO:0042645 5 ACO1,IDH1,KGD1,KGD2,LSC1

sce00020 12 ACO1,CIT1,CIT2,CIT3,FUM1,IDH1,IDH2,KGD1,KGD2,LSC1,LSC2,YJL200C
sce00630 5 ACO1,CIT1,CIT2,CIT3,YJL200C
sce00720 3 ACO1,FUM1,YJL200C

GO:0005739 6 CIT1,CIT2,IDH2,LSC1,LSC2,YJL200C  
 
Using these frequent 1-itemsets we generate the set of frequent 2-itemsets, that is, all 
pairs of annotations that co-occur in at least three genes; 
 

Annotations # genes genes
GO:0005759,GO:0042645 4 ACO1,IDH1,KGD1,KGD2

GO:0005759,sce00020 8 ACO1,CIT1,CIT3,FUM1,IDH1,IDH2,KGD1,KGD2
GO:0005759,sce00630 3 ACO1,CIT1,CIT3
GO:0042645,sce00020 5 ACO1,IDH1,KGD1,KGD2,LSC1

sce00020,sce00630 5 ACO1,CIT1,CIT2,CIT3,YJL200C
sce00020,sce00720 3 ACO1,FUM1,YJL200C

sce00020,GO:0005739 6 CIT1,CIT2,IDH2,LSC1,LSC2,YJL200C
sce00630,GO:0005739 3 CIT1,CIT2,YJL200C  

 
In the next step, we generate frequent 3-itemsets; 
 



Annotations # genes genes
GO:0005759,GO:0042645,sce00020 4 ACO1,IDH1,KGD1,KGD2

GO:0005759,sce00020,sce00630 3 ACO1,CIT1,CIT3
sce00020,sce00630,GO:0005739 3 CIT1,CIT2,YJL200C  

 
 
This procedure is continued until no more combinations are possible. In our example we 
have no 4-itemsets that occur in at least 3 genes so the process finish here. 
 
From this set of frequent sets of annotations, those that contain redundant information 
are filtered. A frequent itemset can be defined as a redundant itemset if it is a subset of a 
larger itemset with equal or greater support value. That is, if a set of annotations, let say 
{A, B}, is a subset of longer set {A,B,C} and is associated to the same set or a subset of 
genes, the set of annotations {A, B} can be removed without loosing information.  
 
After this process the frequency of each set of annotations in computed in the reference 
list and a p-value is calculated. In this way, the output of GENECODIS in this example 
will be the following one; 
 
 

 
 
 
 
 
Notes about execution time and number and size of itemsets 
 
It is important to mention that although the application allows users to select different 
sources of gene annotations there are combinations of annotations that, although can be 
interesting to explore in some cases, may not be very meaningful from the biological 
point of view. For example KEGG pathways and GO Biological Process annotations are 
related to similar biological aspects of genes, and combinations among them rather than 
provide significant information can obscure the interpretation of the data by increasing 
the number of associations. On the contrary, others combinations such as co-occurrence 
patterns among biological processes and cellular components, or molecular functions 



and sequence motifs can be very relevant to get a richer picture of the biology of the 
system. Here, the user has to choose those annotations that are more interesting to 
explore in a given context, knowing that the execution time and the number of 
annotations may increase with the number of different annotations selected in the same 
analysis.  
 
To know the maximum number of combinations, that is, the longest k-itemset that can 
be expected in a set of differentially expressed genes we have to look for the gene that 
contains the largest number of annotations in the set. If that particular gene contains, for 
example 20 annotations, then 20 is the maximum value of k that we would obtain in the 
dataset. If this set of k annotations is simultaneously present in only one gene, then to 
obtain a k-itemset we need a support value of one. If the set of k annotations is present 
in two genes it would be obtained with support value of two, and so on. In this way we 
can say that the maximum value of k will depend on the number of different annotations 
simultaneously selected in one analysis and the support value used.  
 
In GENECODIS the k-itemset with the highest value of k corresponds to the largest set 
of annotations that are simultaneously present in at least three genes. This restriction is 
imposed in order to select significant associations in a reasonable amount of time 
without having a combinatorial explosion in the search space. In addition, requesting 
associations in at least three genes seems to makes sense in order to derive biological 
meanings. 
   
Below there are some graphs about the relationship between the number of 
combinations (values of k) and minimum support for the yeast and human data set 
discussed in the manuscript: 
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The graph on the left contains the data from the analysis of human data and the graph on 
the right shows results from the analysis of the yeast data set. The Y-axis represents the 
length of the maximum set of annotations (maximum value of k) found for each value of 
support (X-axis). For each dataset, we performed four different experiments using 
increasing sources of annotations. The legend of each figure represents each experiment 
indicating the annotations that were simultaneously analyzed (bp: GO biological 
process, cc: GO cellular component, mf: GO molecular function, ipr: interPro motifs, 
sBP: GO Slim biological process, sCC: GO Slim cellular component, sMF: GO Slim 



molecular function). As expected, the maximum value of k increases when support 
value is decreased. 
 
The execution times for extracting combinations of annotations may vary depending on 
the number of selected categories and the support values. Increasing the support value 
decreases the number of sets and, therefore, the execution time. As a matter of fact, that 
is the essence of the apriori algorithm. Below there are some plots about execution 
times and number of itemsets generated from the analysis of the human and yeast 
dataset: 
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The figures reflect the execution times and number of itemsets versus support value. 
Figures on the top were generated from the analysis of the yeast dataset while the two 
plots on the bottom show the results from the analysis of the human data.  
Times are calculated only for the apriori algorithm. Some additional time is also used in 
submitting the job to one of the computing clusters, processing the files and calculating 
statistics, although it was not included in the plots since they represent a minimum, 
almost constant fraction of the whole process.  
An interesting point to mention is that in the case of Human data set, it was not possible 
to include information for support value of one due to the high number of combinations 
that were generated. This is a clear example where the apriori algorithm is useful since 
it allows a drastic reduction of the search space by taking into account those 
combinations of annotations that are frequently present in the dataset. 



It is also important to note that although in many applications the extraction of frequent 
itemsets can be a very computational expensive methodology, the case of biological 
annotations is not one of the most limiting applications. This is probably due to the fact 
that genes tend to have a sparse and modular functional organization. 
 
Some works have study the theoretical complexity of the apriori algorithm. 
GENECODIS only uses the frequent itemset search stage of the whole Apriori 
algorithm. The problem for an average case can be formulated as follow: 
 
Considering a transaction that has I items. During the kth pass of the algorithm, this 

transaction has 
I

C
k
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 potential candidates that need to be checked against the 

candidate hash tree (which is the most used data structure to accelerate the search for 
potential candidates). The average number of leaf nodes in the hash tree is L = M/S. 
Where M is the total number of candidate items (annotations) and S is the average 
number of candidates at the leaf node of the hash tree. Taking into account that C is the 
average number of candidates at each transaction (genes in the list), the number of 
distinct leaf visited per transaction is VC,L, and the computation time per transaction for 
visiting the hash tree is: 
 
Ttrans = C x Ttraversal + VC,L x Tcheck 
 
Where Ttraversal is the cost of hash tree traversal per potential candidate, Tcheck is the cost 
for checking at the leaf with S candidates and VC,L is the expected number of leaves 
visited with C potential candidates and L leaves. 
So, the run time of the algorithm for processing N transactions (genes) is: 
T = Nx Ttrans + O(M) 
T = N x C x Ttraversal + N x VC,L x Tcheck + O(M) 
Where O(M) is the complexity for creating the hash tree. 
 
 


