
Finding sets of annotations that frequently co-occur in a list of genes

In this document we illustrate, with a straightforward example, the GENECODIS
algorithm for finding sets of annotations that frequently co-occur in a gene list.

Given a list of genes, the first step is to retrieve annotations for each gene from the
selected databases.

List of genes

ACO1
CIT1
CIT2
CIT3
FUM1
IDH1
IDH2
KGD1
KGD2
LSC1
LSC2
YJL200C

List of genes

ACO1
CIT1
CIT2
CIT3
FUM1
IDH1
IDH2
KGD1
KGD2
LSC1
LSC2
YJL200C

ACO1
CIT1
CIT2
CIT3
FUM1
IDH1
IDH2
KGD1
KGD2
LSC1
LSC2
YJL200C

GO:0005759,GO:0005829,GO:0042645,sce00020,sce00630,sce00720
GO:0005739,GO:0005759,sce00020,sce00630
GO:0005739, sce00020,sce00630
GO:0005759,sce00020,sce00630
GO:0005759,GO:0005829,sce00020,sce00720
GO:0005759,GO:0042645,sce00020
GO:0005739,GO:0005759,sce00020
GO:0005759,GO:0009353,GO:0042645,sce00020,sce00310,sce00380
GO:0005759,GO:0009353,GO:0042645,sce00020,sce00310
GO:0005739,GO:0042645,sce00020,sce00640
GO:0005739,sce00020,sce00640
GO:0005739,sce00020,sce00630,sce00720

genes Annotations

KEGG GO …

Annotations from
different sources

KEGG GO …KEGG GO …

Annotations from
different sources

In this example, KEGG and GO Cellular Component annotations have been associated
to a set of yeast genes. This set of annotated genes can be treated as a transaction
database, in which genes are transactions and annotations are itemsets using the
classical nomenclature in the field of association rules. This transaction database can be
mined to extract frequent sets of annotations that co-occur in at least x genes.

Given a minimum support value, let say x=3, the first step of the algorithm is to extract
all annotations that occur in at least 3 genes (frequent 1-itemsests);

Annotations # genes genes
GO:0005759 8 ACO1,CIT1,CIT3,FUM1,IDH1,IDH2,KGD1,KGD2
GO:0042645 5 ACO1,IDH1,KGD1,KGD2,LSC1

sce00020 12 ACO1,CIT1,CIT2,CIT3,FUM1,IDH1,IDH2,KGD1,KGD2,LSC1,LSC2,YJL200C
sce00630 5 ACO1,CIT1,CIT2,CIT3,YJL200C
sce00720 3 ACO1,FUM1,YJL200C

GO:0005739 6 CIT1,CIT2,IDH2,LSC1,LSC2,YJL200C

Using these frequent 1-itemsets we generate the set of frequent 2-itemsets, that is, all
pairs of annotations that co-occur in at least three genes;

Annotations # genes genes
GO:0005759,GO:0042645 4 ACO1,IDH1,KGD1,KGD2

GO:0005759,sce00020 8 ACO1,CIT1,CIT3,FUM1,IDH1,IDH2,KGD1,KGD2
GO:0005759,sce00630 3 ACO1,CIT1,CIT3
GO:0042645,sce00020 5 ACO1,IDH1,KGD1,KGD2,LSC1

sce00020,sce00630 5 ACO1,CIT1,CIT2,CIT3,YJL200C
sce00020,sce00720 3 ACO1,FUM1,YJL200C

sce00020,GO:0005739 6 CIT1,CIT2,IDH2,LSC1,LSC2,YJL200C
sce00630,GO:0005739 3 CIT1,CIT2,YJL200C

In the next step, we generate frequent 3-itemsets;

Annotations # genes genes
GO:0005759,GO:0042645,sce00020 4 ACO1,IDH1,KGD1,KGD2

GO:0005759,sce00020,sce00630 3 ACO1,CIT1,CIT3
sce00020,sce00630,GO:0005739 3 CIT1,CIT2,YJL200C

This procedure is continued until no more combinations are possible. In our example we
have no 4-itemsets that occur in at least 3 genes so the process finish here.

From this set of frequent sets of annotations, those that contain redundant information
are filtered. A frequent itemset can be defined as a redundant itemset if it is a subset of a
larger itemset with equal or greater support value. That is, if a set of annotations, let say
{A, B}, is a subset of longer set {A,B,C} and is associated to the same set or a subset of
genes, the set of annotations {A, B} can be removed without loosing information.

After this process the frequency of each set of annotations in computed in the reference
list and a p-value is calculated. In this way, the output of GENECODIS in this example
will be the following one;

Notes about execution time and number and size of itemsets

It is important to mention that although the application allows users to select different
sources of gene annotations there are combinations of annotations that, although can be
interesting to explore in some cases, may not be very meaningful from the biological
point of view. For example KEGG pathways and GO Biological Process annotations are
related to similar biological aspects of genes, and combinations among them rather than
provide significant information can obscure the interpretation of the data by increasing
the number of associations. On the contrary, others combinations such as co-occurrence
patterns among biological processes and cellular components, or molecular functions

and sequence motifs can be very relevant to get a richer picture of the biology of the
system. Here, the user has to choose those annotations that are more interesting to
explore in a given context, knowing that the execution time and the number of
annotations may increase with the number of different annotations selected in the same
analysis.

To know the maximum number of combinations, that is, the longest k-itemset that can
be expected in a set of differentially expressed genes we have to look for the gene that
contains the largest number of annotations in the set. If that particular gene contains, for
example 20 annotations, then 20 is the maximum value of k that we would obtain in the
dataset. If this set of k annotations is simultaneously present in only one gene, then to
obtain a k-itemset we need a support value of one. If the set of k annotations is present
in two genes it would be obtained with support value of two, and so on. In this way we
can say that the maximum value of k will depend on the number of different annotations
simultaneously selected in one analysis and the support value used.

In GENECODIS the k-itemset with the highest value of k corresponds to the largest set
of annotations that are simultaneously present in at least three genes. This restriction is
imposed in order to select significant associations in a reasonable amount of time
without having a combinatorial explosion in the search space. In addition, requesting
associations in at least three genes seems to makes sense in order to derive biological
meanings.

Below there are some graphs about the relationship between the number of
combinations (values of k) and minimum support for the yeast and human data set
discussed in the manuscript:

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25
human data

support

m
ax

im
um

 v
al

ue
 o

f k

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

11
yeast data

support

m
ax

im
um

 v
al

ue
 o

f k

sBP+sMF+sCC+ipr
sBP+sMF+sCC
sBP+sMF
sBP

bp+mf+cc+ipr
bp+mf+cc
bp+mf
bp

The graph on the left contains the data from the analysis of human data and the graph on
the right shows results from the analysis of the yeast data set. The Y-axis represents the
length of the maximum set of annotations (maximum value of k) found for each value of
support (X-axis). For each dataset, we performed four different experiments using
increasing sources of annotations. The legend of each figure represents each experiment
indicating the annotations that were simultaneously analyzed (bp: GO biological
process, cc: GO cellular component, mf: GO molecular function, ipr: interPro motifs,
sBP: GO Slim biological process, sCC: GO Slim cellular component, sMF: GO Slim

molecular function). As expected, the maximum value of k increases when support
value is decreased.

The execution times for extracting combinations of annotations may vary depending on
the number of selected categories and the support values. Increasing the support value
decreases the number of sets and, therefore, the execution time. As a matter of fact, that
is the essence of the apriori algorithm. Below there are some plots about execution
times and number of itemsets generated from the analysis of the human and yeast
dataset:

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400
yeast data

support

nu
m

be
r o

f i
te

m
se

ts

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

support

Ti
m

e
(s

ec
on

ds
)

sBP+sMF+sCC+ipr
sBP+sMF+sCC
sBP+sMF
sBP

sBP+sMF+sCC+ipr
sBP+sMF+sCC
sBP+sMF
sBP

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

support

nu
m

be
r o

f i
te

m
se

ts

1 2 3 4 5 6 7 8 9 10
0

20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340

human data

support

tim
e

(s
ec

on
ds

)

bp+cc+mf+ipr
bp+cc+mf
bp+cc
bp

bp+cc+mf+ipr
bp+cc+mf
bp+cc
bp

The figures reflect the execution times and number of itemsets versus support value.
Figures on the top were generated from the analysis of the yeast dataset while the two
plots on the bottom show the results from the analysis of the human data.
Times are calculated only for the apriori algorithm. Some additional time is also used in
submitting the job to one of the computing clusters, processing the files and calculating
statistics, although it was not included in the plots since they represent a minimum,
almost constant fraction of the whole process.
An interesting point to mention is that in the case of Human data set, it was not possible
to include information for support value of one due to the high number of combinations
that were generated. This is a clear example where the apriori algorithm is useful since
it allows a drastic reduction of the search space by taking into account those
combinations of annotations that are frequently present in the dataset.

It is also important to note that although in many applications the extraction of frequent
itemsets can be a very computational expensive methodology, the case of biological
annotations is not one of the most limiting applications. This is probably due to the fact
that genes tend to have a sparse and modular functional organization.

Some works have study the theoretical complexity of the apriori algorithm.
GENECODIS only uses the frequent itemset search stage of the whole Apriori
algorithm. The problem for an average case can be formulated as follow:

Considering a transaction that has I items. During the kth pass of the algorithm, this

transaction has
I

C
k
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 potential candidates that need to be checked against the

candidate hash tree (which is the most used data structure to accelerate the search for
potential candidates). The average number of leaf nodes in the hash tree is L = M/S.
Where M is the total number of candidate items (annotations) and S is the average
number of candidates at the leaf node of the hash tree. Taking into account that C is the
average number of candidates at each transaction (genes in the list), the number of
distinct leaf visited per transaction is VC,L, and the computation time per transaction for
visiting the hash tree is:

Ttrans = C x Ttraversal + VC,L x Tcheck

Where Ttraversal is the cost of hash tree traversal per potential candidate, Tcheck is the cost
for checking at the leaf with S candidates and VC,L is the expected number of leaves
visited with C potential candidates and L leaves.
So, the run time of the algorithm for processing N transactions (genes) is:
T = Nx Ttrans + O(M)
T = N x C x Ttraversal + N x VC,L x Tcheck + O(M)
Where O(M) is the complexity for creating the hash tree.

