
Supplementary Methods

1 Parameter Estimation and Inference
The posterior distribution of our unknown parameters is proportional to the product of our model likeli-
hood and our assumed prior distributions,

p(C,w,Θ|g, f ,m,b) ∝ p(g|f ,C,Θ) · p(C|m,b,w) · p(w) · p(α) · p(β) · p(σ2)
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whereXijt = Cijfjt. We estimate all unknown parameters by Gibbs sampling, ie. by iteratively estimating
one set of parameters given all other parameters. Specifically, we iterate between

1. EstimatingΘ given C,w and data g, f ,b,m

2. Estimating C given w,Θ and data g, f ,b,m

3. Estimating w given C,Θ and data g, f ,b,m

The details of these steps are given in the following sections. The result of this Gibbs sampling algorithm is
a set of values for each parameter from the posterior distribution given above. In this study, we use these
posterior parameter values for inference in two different ways. First, the parameter values for each Cij

are used to define whether gene i is actually regulated by TF j according to our model: if the majority of
parameter values for Cij are Cij = 1 (as opposed to Cij = 0), then we claim that gene i is regulated by
TF j. This gene is then placed in the C+ group for TF j. Secondly, we use the parameter values for our
linear effects β and interaction effects γ to form 95% posterior intervals for each parameter βj and γjk by
excluding the most extreme 2.5% of the parameter draws in either direction. If the posterior interval for
a particular βj does not contain zero, we conclude that there is significant linear effect for TF j. Similarly,
if the posterior interval for a particular γjk does not contain zero, we concluded that there is a significant
interaction effect between the TFs j and k.

2 Algorithm Step 1: Estimating linear model parameters Θ
The regulation matrix C is assumed known during this step, so we do not need to use our prior data b,m
or the current values of w. We use C to construct the variables X whereXijt = Cijfjt. The linear model
parametersΘ are then separately estimated by the following iterative strategy.

a. Estimate αi given β, σ2 and data (g’s andX ’s):
Since each intercept αi is independent from the other α’s, they can be separately sampled,

p(αi|β, σ2,g,X) ∝ exp
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where Yt = git −
J∑

j=1
βjXijt and να = (T/σ2 + 1/τ2

α)−1. This distribution implies that

αi ∼ Normal
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We can make our prior distribution for each αi to be non-informative by making τα very large (in this
study, 10000) relative to the contribution of the likelihood to the variance (σ2/T ).

b. Estimate βj given α, σ2 and data (g’s andX ’s).
Note that in the step below, we have combined our notation for interaction coefficients γjk and linear
coefficients βj into a single vector of parameters β. These coefficients βj are not independent from
each other, and so must be iteratively sampled themselves:

p(βj |α, σ2,g,X) ∝ exp
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This distribution implies that

βj ∼ Normal
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)

Note that the distribution of βj depends on the values of the other βj′ ’s, so we must sample the βj ’s
one at a time given the current values of the other βj′ ’s. We can make our prior distribution for each
βj to be non-informative by making τβ very large (in this study, 10000) relative to the contribution of
the likelihood to the variance (σ2/TXX ).

c. Estimate σ2 given β, α and data (g’s andX ’s).
For the residual variance σ2, we have the following conditional distribution

p(σ2|α, β,g,X) ∝ (σ2)−(T N
2 +2) · exp
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βjXijt)2. The above calculations use a χ2

ν prior distribution for

σ with hyper-parameter ν = 2. We see that the influence of this prior is very small on the posterior
distribution for σ2, which is a scaled-inverse χ2 distribution with degrees of freedomparameter TN +
2 and scale parameter s2 = (Vα + 1)/(TN + 2).
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3 Algorithm Step 2: Estimating regulation matrix C
We are assuming that both our linear model parametersΘ and our weightsw are known for this step of the
algorithm. When estimating a new value for each Cij , we also can condition on C′, which is all the other
Ci′j′ values in C (i′ $= i and j′ $= j). This gives us the following conditional distribution for Cij :

p(Cij |Θ,w,C′,g, f ,b,m) ∝ exp
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Let Z1 be the value of equation (1) when Cij = 1 and Z0 be the value of equation (1) when Cij = 0. We
sample a new value of Cij as follows:

Cij =
{

1 with probability Z%
1

0 with probability Z%
0

where Z%
i = Zi/(Z1 + Z0). Moreover, to understand the contribution from expression data, we can design

COGRIM to update the indicator Cij without the ChIP binding and motif priors (bij andmij).

4 Algorithm Step 3: Estimating prior weights w
We are assuming that the regulation matrix C is known for this step of the algorithm, so we do not need
to use any of the expression data ,g or linear model parametersΘ at this point. For each TF j, we need to
estimate a new weight wj based on the following distribution:

p(wj |C, bij , mij) ∝
[
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Note that there is also a normalizing constant present in (2) that is also a function of wj , which comes from
the integration of p(wj ,Cj |b,m) over all possible values of Cj . There is no built-in function for sampling a
value from equation (2), but instead we can use grid sampling, as follows:

1. Set up a grid of n possible wj values: z = (z1 = 0.01, z2 = 0.02, . . . , zn = 0.99)

2. Evaluate equation (2) for each of these grid values. In other words, calculate

pi = p(zi|C, bij , mij)

3. Normalize the probabilities for each grid value: p%
i = pi/

∑
i pi

4. Set wj = zi with probability p%
i

5 Evaluating Convergence
Multiple chains of our Gibbs sampling algorithm were run from different starting points. We monitored

the convergence based on the within and between variance ratio R̂ [34], which converges towards 1 as the

multiple chains converge towards each other. The maximum R̂ values (across different parameter sets)
after 5000 iterations are shown in the following table for the three applications to Yeast, C/EBP-β and SRF.
We concluded, based on these R̂ values, that our Gibbs sampler chains had converged after 5000 iterations
in each application. We also examined the autocorrelation function of the sampled draws. We observed
a rapid decline in the autocorrelation for increasing lags which indicates that the sampler does not have a
substantively high autocorrelation(data not shown).
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Yeast C/EBP-β SRF

R̂(σ2) 1.001 1.0002 1.0004
max

i
R̂(αi) 1.026 1.011 1.008

max
j

R̂(βj) 1.014 1.005 1.002

max
j

R̂(wj) 1.007

6 Permutation evaluation of the sensitivity
To understand the classification sensitivity on priors and posterior thresholds, we can employ a permu-
tation scheme to make sure that our threshold of 0.5 is reasonable. Prior data sources bij obtained from
ChIP binding data can be randomly permuted and then implemented in COGRIM to be compared with
our results obtained using our actual non-permuted priors. This comparison can help us understand the
sensitivity of our results to both prior information and posterior thresholds. As an example, we conducted
this permutation analysis on a dataset for the HAP4 transcription factor in Yeast. The comparisons showed
that (data not shown) (1) inference based on permuted prior information is much more sensitive to different
posterior cutoffs than our actual results and (2) both the data in our prior distributions and the likelihood
of our expression data are contributing substantially to our inferred target genes.

7 Converting Binding p-values into Binding Probabilities
The results produced by a typical ChIP binding experiment for TF j is a set of measures Yi for the enrich-
ment of each gene i for that TF j (often these measures are averages calculated over several repetitions of
the experiment). These measures are typically standardized, Xi = (Yi − Y )/sY , to have a common mean
and standard deviation. For eachXi, a significance test is performed against a null hypothesis of no enrich-
ment, giving a p-value pi for each gene that is calculated using a standard normal or a t distribution. These
p-values can not be directly interpreted as the probability bi = P(TF j binds gene i), so we use the following
procedure to convert pi into binding probabilities bi (Since bij is calculated for each TF j independently, we
here just use i notation instead of ij for simplicity).

We first convert the p-values pi back to their corresponding standardized enrichment measuresXi using
the inverse-CDF for the standard normal distribution. The distribution of these enrichment measures Xi

should be a mixture of two different groups: a large group of unenriched genes that should be centered
at X = 0 and a smaller group of genes that are truly enriched, with center µ > 0. This mixture model is
visually represented for the transcription factor ABF1 in the following Figure.

Statistically, we can model each gene with a latent variable Ii that indicates whether that gene is in the
enriched group (Ii = 1) or unenriched group (Ii = 0). Our desired binding probabilities for each gene are
then simply bi = P(Ii = 1). An EM algorithm [30] was written to simultaneously estimate the unknown
parameters of our mixture model (mixing proportion and mean/variance of enriched component) as well
as the bi = P(Ii = 1) for each gene. This algorithm alternates between

1. estimating the unknown parameters of our mixture model given current estimates of each bi:

µ̂ =
∑

i Ii · Xi∑
i Ii

τ̂2 =
∑

i Ii · (Xi − µ)2∑
i Ii

λ̂ =
∑

i Ii

n

2. estimating the unknown bi’s given current estimates µ̂ and λ̂ using Bayes rule:

bi = P (Ii = 1|Xi) =
P (Xi|Ii = 1)P (Ii = 1)

P (Xi|Ii = 1)P (Ii = 1) + P (Xi|Ii = 0)P (Ii = 0)

=
τ̂−1 exp( 1

2τ̂2 (Xi − µ̂)2) · λ̂
τ̂−1 exp( 1

2τ̂2 (Xi − µ̂)2) · λ̂ + exp(1
2X2

i ) · (1 − λ̂)
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until these values converge to a fixed point. A detailed discussion of expression mixture models is given
in [35]. It should be noted that our mixture model used the theoretical standard normal null distribution
instead of an empirical null distribution since the use of an unrestrictedmixturemodel (with an empirically-
fitted null distribution) lead to unreasonable mixtures for several transcription factors. This procedure was
repeated for each TF j to generate our full set of binding probabilities bij . The correspondence between
the number of genes we predicted as enriched based on p-values (pi < 0.005) and binding probabilities
(bi > 0.5) is very good, with a correlation of 0.97 between the number of genes predicted across our 113
transcription factors. However, we noticed that our conversion procedure tended to be overly-conservative
for genes with very low p-values. In other words, genes with pij < 0.001 had estimated binding probabil-
ities that where smaller than expected, possibly due to our assumption of a standard normal null distribu-
tion. For these highly-significant genes, the binding probabilities were increased to bij = 0.95 to reflect our
extra confidence that these genes were truly enriched in the ChIP binding experiment for TF j.

8 Calculate the Probability of TF Binding Site Occurrence
The first step in calculating a probability for a binding site occurrence for TF j near to gene i is to scan the
genomic sequence nearby to gene i for good matches to the position weight matrix (PWM) for TF j. The
similarity between a TF PWM with width w and a sequence of nucleotides {a1, . . . , aw} is defined in the
equation below:

S(a1, . . . , aw) =
∑

t

log
(

Pt,at

Bat

)

where Pt,at is the probability of observing nucleotide at in position t of the PWM, and Bat is the probabil-
ity of observing nucleotide at in the background sequence. When scanning the sequence near gene i for
matches to the PWM of TF j, we only focus on the score for the best match we find, which we denote as
Smax

ij .
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The second step of our procedure is to calculate the probability mij of a binding site for TF j near
to gene i by comparing the maximum similarity score Smax

ij to the scores S that we get by applying our
scanning procedure to randomly-generatedw-mers (sequences of length w). More specifically, we calculate
the probability ofmij of a binding site for TF j near to gene i to be the probability that we observe no score
S greater than Smax

ij in a randomly-generated sequence of length L, where L is the length of our original
scanned sequence near gene i. In other words,

mij = (1 − p′)L−w+1

where L − w + 1 is the number of possible matches to a PWM of width w in a sequence of length L, and p′

is the probability that a randomly-generated w-mer has a score S that is greater than Smax
ij . As an example,

for the C/EBP-β PWM, Figure shows the value of p′ as a function of S.
TESS-DIST [24] was used for the calculation of these binding site probabilities. For short PWMs, this

calculation can be done analytically by enumerating all possible w-mers and computing their score. How-
ever, the number of w-mers is 4w which becomes cumbersome to enumerate as w increases so TESS-DIST
adopts a dynamic programming algorithm [36] to compute the approximate distribution of scores. The
approximation is achieved by binning the possible scores thus reducing the total number of possible scores
to a number that is linear (O(w)) in the length of the PWM.
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Supplementary Table 1. Used Expression Data in Yeast 
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Collected Yeast expression data from public literature and database were already 

processed through common microarray normalization pipelines [37]. We further 

normalized the combined expression profiles by subtracting the mean of each profile and 

dividing by the standard deviation across experiments. 

 

Supplementary Table 2. TF pair interaction evidence 

 

TF1 TF2 Evidence 

ACE2 SWI4 Stillman et al., 1994; Dohrmann et al., 1996 

ACE2 SWI5 Doolin et al., 2001 

ACE2 SKN7 banerjee et al., 2003; Luft et al., 2001 

ACE2 HSF1 banerjee et al., 2003; Luft et al., 2001 

SWI4 SWI5 SGD 

SWI4 SWI6 SGD 

SWI4 MBP1 Dirick et al., 1996; Iyer et al., 2001; Horak et al., 2002 

SWI4 STE12 Baetz et al., 2001 

Breeden & Nasmyth, 1987; Nasmyth & Dirick,  

1991; Dirick et al., 1992; Koch et al., 1993;  

SWI6 MBP1 Dirick et al., 1996; Iyer et al., 2001; Horak et al., 2002 

FKH1 FKH2 Zhu et al., 2000; Hollenhorst et al., 2000; Sun et al., 2002 

FKH2 NDD1 Pic et al., 2000; Koranda et al., Kumar et al., 2000; Sun et al., 2002 

FKH2 MCM1 Pic et al., 2000; Koranda et al., Kumar et al., 2000; Sun et al., 2002 

NDD1 MCM1 Pic et al., 2000; Koranda et al., Kumar et al., 2000; Sun et al., 2002 

Hwang-Shumm et al., 1991; Primig et al., 1991; Errede, 1993;  

MCM1 STE12 Kirkmann-Correia et al., 1993 



 

 

 

84 TF pairs with significant effects on expression of target genes 

TF1 TF2 Gamma 

ACE2 SWI4 0.200536878 

ACE2 SWI5 0.22775754 

ACE2 SKN7 0.394727827 

ACE2 HSF1 0.432163732 

SWI4 SWI5 0.200020088 

SWI4 SWI6 0.35768221 

SWI4 MBP1 0.213346764 

SWI4 STB1 0.215075917 

SWI4 FKH1 0.277864065 

SWI4 FKH2 0.326079244 

SWI4 NDD1 0.16672633 

SWI4 MCM1 0.228995585 

SWI4 ABF1 0.16068576 

SWI4 CBF1 0.19898189 

SWI4 RAP1 0.323818833 

SWI4 REB1 0.270482368 

SWI4 STE12 0.320334302 

SWI5 FKH2 0.329520096 

SWI5 MCM1 0.244860201 

SWI5 REB1 0.307756859 

SWI5 STE12 0.348633234 

SWI6 MBP1 0.30583955 

SWI6 STB1 0.32667736 

SWI6 FKH1 0.442012906 

SWI6 FKH2 0.483047343 

SWI6 NDD1 0.287393258 

SWI6 MCM1 0.374051579 

SWI6 ABF1 0.304132418 

SWI6 REB1 0.428232107 

SWI6 STE12 0.480789074 

MBP1 STB1 0.168895212 

MBP1 FKH1 0.233766035 

MBP1 FKH2 0.283392737 

MBP1 NDD1 0.121526234 

MBP1 MCM1 0.172403218 

MBP1 ABF1 0.126488345 

MBP1 MET31 0.273953855 

MBP1 RAP1 0.29447829 

MBP1 REB1 0.232504717 

STB1 FKH2 0.351376072 

STB1 NDD1 0.183789962 

SKN7 HSF1 0.63765379 



SKN7 YAP1 0.431132581 

FKH1 FKH2 0.489508263 

FKH1 NDD1 0.261916798 

FKH1 MCM1 0.333256997 

FKH1 ABF1 0.271478263 

FKH1 RAP1 0.481893986 

FKH1 REB1 0.39131322 

FKH2 NDD1 0.319452542 

FKH2 MCM1 0.375321032 

FKH2 ABF1 0.283802259 

FKH2 RAP1 0.531015871 

FKH2 REB1 0.408345439 

FKH2 STE12 0.467480448 

NDD1 MCM1 0.20998625 

NDD1 ABF1 0.13246564 

NDD1 RAP1 0.293452199 

NDD1 REB1 0.242339652 

NDD1 STE12 0.284546001 

MCM1 ABF1 0.197601091 

MCM1 MET31 0.378656929 

MCM1 REB1 0.335792703 

MCM1 STE12 0.39270085 

ABF1 BAS1 0.229871436 

ABF1 CBF1 0.179409718 

ABF1 GCN4 0.147673229 

ABF1 GCR2 0.194112306 

ABF1 HAP2 0.126568578 

ABF1 HAP4 0.130782244 

ABF1 MET31 0.274035349 

ABF1 RAP1 0.293649063 

ABF1 REB1 0.245824638 

CAD1 YAP1 0.566605197 

GCR2 REB1 0.379279221 

HAP2 HAP3 0.285251722 

HAP2 HAP4 0.241337504 

HAP3 HAP4 0.336723095 

HSF1 MSN4 0.534651436 

LEU3 MET31 0.653046464 

LEU3 RAP1 0.605344561 

MET31 RAP1 0.609837895 

MET31 REB1 0.482888431 

RAP1 REB1 0.435230415 

 

Supplementary Table 3. SRF Targets 

 

Validated SRF targets   

Possible False 

Negative 

SRF  ACVR1B 



NKX25  DVL2 

ACTR3  FEN1 

AOC3  NM_008273 

RHOE  SLC2A4 

ATP2A2  CDH11 

CFL1  HNRPAB 

CFL2  NM_010698 

CORO1A  EEF1B2 

DSTN  NM_019583 

DTNA  NM_026307 

ENAH  NM_027877 

PDLIM5  IL13RA1 

HSPB7  NDUFS1 

ITGA5   

ITGB1BP2   

PFN1   

PLN   

SDC4   

TGFB1I1   

TLN1   

TNNC1   

TRIP6   

COPEB   

ELF5   

ETV1   

FHL2   

HOXB5   

LEF1   

NFATC4   

NFYB   

TCFAP2B   

WWTR1   

ADM   

CTGF   

DUSP6   

GPC4   

MRGPRF   

P2RX1   

RRAD   

TM4SF13   

BIN1   

DNAJB1   

MRVI1   

CAR3   

UROD   

GALNT3   

IMPACT   



LZF   

SHKBP1   

 

 

 

Supplementary Table 4. C/EBP-!  Targets Identified by COGRIM 

 

  

Gene 

Max Fold 

Change in 

ChIP-chip data 

Max Fold Change 

in expression 

data 

Aldh1a1* 8.5 2.5 

Bcap37* 1.3 1.5 

Car3* 2.1 3.9 

Dnm2* 1.3 4.9 

Es1* 1.5 2.1 

Fkbp11* 1.8 1.7 

Gstt1* 1.3 1.6 

Grb2* 1.8 2.6 

Krt1-18* 1.2 10.7 

Pepck1* 2.8 1.4 

Rhob* 1.6 1.5 

Rnf19* 1.3 1.3 

S100a10* 3.0 2.0 

Saa1* 1.4 101.9 

Validated 

Targets 

Predicted 

by 

COGRIM 

      

Anxa5* 6.7 1.9 

Tcp1 4.3 1.2 

Oaz1 4.0 1.6 

Cxcl12 3.8 1.5 

Gstm1 3.3 1.8 

Ier2 3.0 1.2 

H2-Bf 2.5 1.3 

H3f3b 2.4 1.6 

Pabpc1 2.1 2.6 

Cdc42 2.1 1.3 

Arpc1b 2.1 1.6 

Aqp8 1.9 1.6 

Chd1* 1.6 1.6 

Rnase1 1.5 3.5 

Acsl1 1.5 3.9 

Ppp2cb 1.4 2.3 

Ptk2 1.3 4.2 

  

Potential 

Targets 

Predicted 

by 

COGRIM 

Rnase4 1.2 1.8 



    
*genes also selected in Friedman et al. (2004) 

 

 

Table 5. C/EBP-!  Targets Identified by COGRIM based on expression data alone 

*experimentally validated C/EBP-beta targets in Friedman et al. (2004) 

 

Gene 

Max Fold 

Change in 

Chip-chip 

data 

Max Fold 

Change in 

expression 

data 

Dnm2 * 1.30 4.90 

Es1 * 1.50 2.10 

Pepck1 * 2.80 1.40 

Krt1-18 * 1.20 10.70 

Saa1* 1.40 101.90 

      

Ier2  3.00 1.20 

Pabpc1  2.10 2.60 

Ptk2  1.30 4.20 

Oaz1  4.00 1.60 

Prss2 1.11 2.34 

Rcor1 1.25 2.06 

Ifrd1 1.05 3.23 

Zbtb17 1.12 11.99 

Acadm 1.11 11.98 

Rnf130 1.15 1.33 

Tgif 1.17 2.65 

Cel 1.26 1.11 

Ctrl 1.32 2.56 

Nme2 1.13 2.43 

Cmkor1 1.27 4.60 

Sort1 1.38 5.11 

Coro1c 1.18 1.14 

Dnajb6 1.25 5.12 

Ets2 1.14 1.78 

Tceal8 1.68 1.83 

H2afz 1.26 2.48 

 

Table 6. Identify Activators and Repressors 
Statistical significance of the activator was determined by significant positive beta with 95% 

positive posterior interval, and similarly, repressor was determined by significant negative beta 

with 95% negative posterior interval. Sixteen TFs were identified as activators and one repressor. 

Also, we use another method to determine the activation or repression, and check the consistency. 

In the second method, statistical significance of the activator was determined by computing 

correlation coefficients between all TFs and all gene clusters, and taking 5% positive tail of the 

distribution of correlation coefficients; similarly, repressor was determined by taking 5% negative 



tail. The consistent beta and expression correlation suggests that the beta parameter in our model 

can be used as an indicator of TFs’ activity.  
 

Expression Correlation 

between TF and its 

regulons 

TF name ! B+/C+ B-/C+ 

Descriptions from SGD 

& Literature 

SWI5 0.35 0.36 0.53 

activates transcription of cell cycle 

genes. 

SWI6 0.63 0.63 0.67 

activates transcription of cell cycle 

genes. 

FKH1 0.57 0.77 0.75 

activates transcription of cell cycle 

genes. 

FKH2* 0.64 0.51 0.57 

activates transcription of cell cycle 

genes. 

BAS1* 0.59 0.61 0.67 

Myb-related transcription factor 

involved in regulating basal and 

induced expression of genes of the 

purine and histidine biosynthesis 

pathways 

CAD1 0.87 0.69 0.74 

AP-1-like bZIP transcriptional 

activator involved in multiple stress 

responses, iron metabolism, and 

pleiotropic drug resistance; controls a 

set of genes involved in stabilizing 

proteins 

HAP3* 0.46 0.41 0.56 

a transcriptional activator and global 

regulator of respiratory gene 

expression 

HAP4 0.41 0.84 0.80 

a transcriptional activator and global 

regulator of respiratory gene 

expression 

HSF1 0.89 0.55 0.59 

activates multiple genes in response 

to heat shock 

LEU3* 0.81 0.60 0.64 

involved in branched chain amino 

acid biosynthesis and ammonia 

assimilation 

MET31* 0.72 0.55 0.56 

involved in regulating expression of 

the methionine biosynthetic genes 

MSN4 0.56 0.59 0.64 

Transcriptional activator related to 

Msn2p; activated in stress conditions, 

which results in translocation from 

the cytoplasm to the nucleus; binds 

DNA at stress response elements of 

responsive genes, inducing gene 

expression 

RAP1* 0.75 0.55 0.58 

DNA-binding protein involved in 

either activation or repression of 

transcription 



REB1* 0.58 0.56 0.57 

RNA polymerase I enhancer binding 

protein 

STE12 0.69 0.83 0.84 

activates genes involved in mating or 

pseudohyphal/invasive growth 

pathways 

YAP1 0.50 0.58 0.54 

bZip transcription factor required for 

oxidative stress tolerance 

RME1* -0.45 -0.51 -0.46 

Zinc finger protein involved in 

control of meiosis; prevents meiosis 

by repressing IME1 expression  

 

* COGRIM identified seven more activators as well as one repressor RME1 when comparing to 

GRAM [4]. 
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Supplementary Figure 1. 

Based on our estimated regulation indicators Cij, we construct the functional regulatory 

network with 2298 TF-gene interactions between 39 TFs and 1542 functional target 

genes. The edges represent the regulatory activity of TF to target genes, the box nodes 

(red) represent transcription factors labeled with TF names, other nodes represent the 

target genes and the gene names are not shown. The regulatory network is illustrated with 

LGL [38]. 

 
 


