
 
 

Supplementary Fig. 1   Effect of contrast on response spread. (a) and (b) scatter plot of 

min
!  and 

maj
!  for two target contrasts (7% and 25%) across all 8 experiments. The red 

error bars indicate one standard error and are centered on the mean value. The mean of 

min
! and

maj
!  are not significantly different for the two contrast (P > 0.05, paired t-test). 

(c) Scatter plot of response amplitude for the fitted 2D Gaussian in all 8 experiments. 

Response to 25% contrast target was significantly higher than response to 7% contrast 

target (P = 0.03, paired t-test). Despite the differences in response amplitude, response 

spread is not significantly different for the two target contrasts. 

 



 
 

Supplementary Fig. 2   Effect of eye position on response spread. We first calculated the 

mean offset and standard deviation of eye positions for each target-present trial within the 

temporal interval over which VSD responses were averaged.  

(a) and (b) scatter plots of 
min

!  and 
maj

!  for trials with values below the median 

variation (standard deviation) vs. trials with values above the median variation across all 

8 experiments. (c) and (d) scatter plots of 
min

!  and 
maj

!  for trials with values below the 

median offset vs. trials with values above the median offset across all 8 experiments.  

Error bars – same convention as in Supplementary Fig. 1.  

If variability and/or offset of eye positions contribute significantly to neural 

response spread, we would expect the spread to be significantly lower in the subset of 

trials with lower variance and/or offset. Instead, the average values fall close to the 

identity line, indicating that the contribution of eye position to the VSD response spread 

is minimal. The average value of the median offset was 0.32 deg and the average value of 

the median standard deviation was 0.003 deg2 (N = 8).  



 
 

Supplementary Fig. 3   Variability in V1 population responses, as measured by VSD 

imaging, can be described as an additive (stimulus independent) Gaussian noise with 

widespread spatial correlations. (a)   Response variability (over trials) as a function of 

target contrast at the maximal d’ site in the example experiment.  Blue curve represents 

linear regression line. (b)   Same as (a), combined over all 8 experiments. Response 

variability is not significantly affected by stimulus contrast. The slope of the regression 

line was not significantly different from zero (t-test, N = 8). (c)   Distribution of z-score 

values combined across all trials and all sites in an area of 8 x 8 mm in the example 

experiment. Residual responses at each site were first Z-transformed and then combined 

across sites. Red symbols – target-present trials; Green symbols – target-absent trials; 

Blue curve – Standard normal distribution. (d) Same as c. but combined across all 8 

experiments. The variability in the VSD responses is approximately Gaussian and 

stimulus independent. (e), Average spatial correlations between pairs of sites as a 

function of their distance (as in Fig. 2f) averaged over all 8 experiments. Red – target-

present trials; Green – target-absent trials. There is a small tendency for target present-



trials to have a slightly lower spatial correlation at long distances but the overall shape of 

the spatial correlation curves are very similar in target-present and target-absent trials. 



 
Supplementary Fig. 4.  Effect of pool size on correlations in population responses. Each 

curve shows the correlation between pooled responses as a function of pool size for 

different initial pairwise correlations between individual neurons (see Supplementary 

Methods, Eq. (6)). Dashed blue lines indicate the expected correlation between two 

neighboring 0.25 x 0.25mm pixels (see text). 

 

 



 
Supplementary Fig. 5.  Comparison between spatial correlations measured from V1 and 

spatial correlations measured during control experiment with light emitting diode (LED) 

(see text). Same conventions as in Fig. 2f. In the control experiment, the surface of an 

LED was illuminated with the same light source used during the VSD experiments. A 

signal with comparable magnitude as in the VSD experiments was simulated using an 

LED covered by a -3 log unit neutral density filter.  

 



 

 
 

Supplementary Fig. 6.  Optimal two-point pooling in the example experiment. (a) 

Normalized falloff in sensitivity along the minor axis of the average response in Fig. 2e 

(red) and falloff in correlations along the same axis (blue).  (b)  The ratio of the optimal 

weights ( 2 1/w w ) as a function of the distance between the sites (obtained using Eq. 4, 

Supplementary Methods), where the first site, with sensitivity 1d ′ , is the one with the 

maximal sensitivity (the peak of the red curve in a).  (c)  Expected improvement in the 

pooled sensitivity relative to 1d ′  as a function of the distance between the sites, obtained 

using Eq. 5 , (Supplementary Methods). 

 At distances where 2 1/d d r′ ′> (red curve above blue), 2w  is positive.  The value of 

pooledd ′  is high when sites are nearby and decreases rapidly to 1d ′  as the distance between 

the sites increases.  At longer distances, where 2 1/d d r′ ′< , pooledd ′  starts increasing again 

and 2w  become negative.  Because d ′  falls off more rapidly than r, higher sensitivity is 



 

obtained for second sites approximately 3.2 mm away from the 1d ′  site.  Dashed green 

horizontal lines are the distances where 2 1/d d r′ ′= . 



 

Supplementary Methods 
 
Optimal pooling rules 

We note that the Optimal pooling rule relies on the covariance matrix of 

responses at different sites.  If we let ix be the observed amplitude at site i ( 1, , )i n= … on 

trial j ( 1, , )j m= … , then the covariance matrix Σ is an n by n matrix, where ( , )i iΣ  is the 

variance of ix across the m trials, and ( , )i kΣ is the covariance of ix  and kx  across the m 

trials. 

The optimal pooling rule for two sites is easy to apply and provides useful 

intuitions about how correlated noisy responses should be combined (see Fig. 3 and 

Supplementary Fig. 6).  Consider responses from a pair of sites with sensitivity 1 2,d d′ ′ , 

standard deviations 1 2,σ σ  and correlation r.  Applying Eq.  Error! Reference source 

not found.), we obtain the optimal set of weights: 
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Further, applying Eq. (3), the combined sensitivity at the two sites is given by  
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Supplementary Fig. 6 shows 2w  and pooledd ′ computed using Equations (4) and (5) in the 

example experiment. 

The basic result for optimal pooling over two sites applies in the more general 

case where responses are pooled from n sites.  However, there are often practical 

difficulties in determining the inverse covariance matrices required by equation (2); for 



 

example, it is often impossible to invert very large matrices.  A standard way to get 

around these difficulties is to determine the optimal weights using Fourier methods.  

Specifically, the Fourier transform of the average 2D spatial correlation function (the 

radial 2D version of Fig. 2f) gives the power spectrum of the Gaussian noise.  From the 

power spectrum of the noise we can compute a whitening kernel (a spatial filter), which, 

when convolved with the spatial response, will decorrelate the noise in the response.  Fig. 

3c shows a cross section of the whitening kernel for the example experiment.  It is well 

known that the inverse covariance matrix 1 T−Σ = Λ Λ , where Λ  is the whitening matrix, 

and thus, convolving the whitening filter twice with the average response s is 

mathematically equivalent to computing the optimal weights in Eq. (2) 38.  

The detection sensitivity of the different pooling rules was determined using a 

jackknife procedure 40.  In this procedure, a separate analysis is performed for each of the 

m trials.  For each trial, model parameters and pooled responses are computed for the 

remaining m-1 trials, and an optimal criterion is established based on those trials.  This 

criterion is then applied to the pooled response from the unseen trial; the performance of 

the model is classified as correct, if the pooled response exceeds the criterion on a target-

present trial, or remains below the criterion on a target-absent trial.  This procedure is 

repeated for each trial in our data set to obtain the neurometric function.  Analysis of 

simulated data shows that for the number of trials in our experiments (typically 100 

trials), the jackknife procedure underestimates the detection sensitivity of the optimal 

pooling rule.  This is an additional reason why performance estimates for the Optimal 

rule (Fig. 4 and Fig. 5) should be viewed as a lower bound on the actual neuronal 

sensitivity. 



 

 
Correlations in neural populations 

Exceedingly weak pairwise correlations between neurons can lead to high 

correlations between pools of neurons. Considering the simple case of two populations of 

neurons with uniform pairwise correlation within and between pools, the correlation NR  

between the pooled (summed) responses is given by:  

(6)  
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where N is the number of neurons in each pool and r is the pairwise correlation between 

individual neurons. This equation shows that even for very low pairwise correlations, the 

correlation between the pooled responses can reach high values for sufficiently large N 

(Supplementary Fig. 4).  




