
SI Appendix

Modelling Genetic Networks

Allosteric Model of Transcription Factors

We model transcription factors as allosteric molecules having two states: a DNA-binding
state (B) and a non-DNA binding state (N). Following Monod-Wyman-Changeux (1), the
presence of sugar causes a shift in the time the transcription factor spends in each state (Fig.
5). Sugar can bind to either the B or the N form of the transcription factor, but does so
with a different binding affinity (Kb for the DNA-binding state and Kn for the non-DNA-
binding state). Only when unbound by sugar can the transcription factor change between
its two states. The reaction describing this change has an equilibrium constant of Kt. If
Kb ≫ Kn, sugar preferentially binds to the B state. By binding to the transcription factor,
sugar converts B0 molecules into Br molecules, more so than N0 molecules into Nr molecules
(where the subscript r denotes that r sugar molecules are bound). The reaction between
B0 and N0 is no longer at equilibrium and more N molecules convert to B molecules while
this equilibrium is restored. The population of transcription factors as a whole is now more
in the stronger sugar-binding B state, and so again more B than N molecules are likely to
bind sugar. This positive feedback means that the number of transcription factors in the B
state can be a highly non-linear function of the number of sugar molecules (1). If Kn ≫ Kb

the opposite behaviour occurs, and sugar drives the transcription factors into the non-DNA
binding N state.
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Fig. 5. An allosteric transcription factor that binds sugar S and exists in a DNA-binding
state (B) and a non-DNA binding state (N). Each sugar binding site is assumed identical,
and the subscripts denote the number of bound sugar molecules. Consequently, the basic
equilibrium association constants for sugar binding, Kb and Kn, are altered by the ratio of the
number of sites available for binding sugar (which increase the forward rate of the reaction)
to the number of bound sugars (which increase the backward rate).

We assume that both the total amount of sugar and the total amount of transcription
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factors are conserved:

Stot = S +
m
∑

r=0

(rNr + rBr) [6]

Ttot =
m
∑

r=0

(Nr + Br), [7]

where m is the number of sugar binding sites. Following ref. 1, we assume that each reaction
in Fig. 5 is at equilibrium:

KtN0 = B0

mKbSB0 = B1

(m − 1)KbSB1 = 2B2

...
...

KnSNm−1 = mNm. [8]

Each equilibrium concentration can be solved in terms of N0, the amount of transcription
factor in the non-DNA binding state unbound by sugar:

Nr =

(

m

r

)

(KnS)rN0

Br =

(

m

r

)

(KbS)rKtN0. [9]

Using these expressions and carrying out the summations in Eqs. 6 and 7 with the binomial
theorem gives:

Stot = S + N0mS
[

Kn(1 + KnS)m−1 + KtKb(1 + KbS)m−1
]

[10]

Ttot = N0 [(1 + KnS)m + Kt(1 + KbS)m] . [11]

For a given Stot and Ttot and the equilibrium association constants Kt, Kb, and Kn, we
numerically solve Eqs. 10 and 11 for the amount of free sugar, S, and for N0. We can
therefore calculate the total amount of transcription factor in the non-DNA binding state,
N = N0(1+KnS)m, and the total amount in the DNA-binding state, B = N0Kt(1+KbS)m.

Promoter Models

We consider three different models of the promoter (Fig. 2B and C). The type A model has
just one operator site. The type B model has two operators: a transcription factor at either
operator prevents or initiates transcription independently. The final model, type C, has two
operators but only one is sufficiently close to the RNA polymerase binding site to directly
affect transcription. Nevertheless, a transcription factor bound to the inactive operator can
stabilize a transcription factor bound to the active operator. We denote the fraction of time
that the promoter is able to initiate transcription at equilibrium as promoter efficacy, Peff .

2



We follow Shea and Ackers (2) to calculate the occupancy of the promoter at equilibrium.
For example, for a negatively controlled type A promoter, which has just one binding site
for a repressor, we consider the promoter existing in two states: P1, bound by repressor, and
P0, not bound by repressor. If K1 is the association constant for repressor binding and B
is the number of repressors that are able to bind DNA, then P1 = K1BP0. The promoter
is conserved: P0 + P1 = 1, if there is only one copy of the promoter. Combining these two
equations implies that the promoter efficacy, P0, obeys P0 = 1/(1 + K1B). We solve for the
promoter efficacy for more complicated promoters similarly.

For a negatively controlled system, Peff is the equilibrium fraction of promoter free from
repressor. For the different promoter models:

type A,

Peff =
1

1 + K1B
[12]

type B,

Peff =
1

1 + (K1 + K2)B + K1K2B2
[13]

type C,

Peff =
1 + K2B

1 + (K1 + K2)B + 1
2
(K1K2 + K1K2Kc)B2

, [14]

where B is the total amount of transcription factor in the DNA-binding form, K1 and K2

are association constants for transcription factor binding to the two operator sites, and Kc

determines the degree of cooperativity between two interacting, DNA bound transcription
factors.

For positively controlled systems, Peff is the equilibrium fraction of promoter bound by
activator. For

type A,

Peff =
K1B

1 + K1B
[15]

type B,

Peff =
(K1 + K2)B + K1K2B

2

1 + (K1 + K2)B + K1K2B2
[16]

type C,

Peff =
K1B + 1

2
(K1K2 + K1K2Kc)B

2

1 + (K1 + K2)B + 1
2
(K1K2 + K1K2Kc)B2

. [17]

Note when Kc = 1, that is, no cooperative interaction between the transcription factors,
the type C models do not reduce to the type B models because only one operator is active
for type C, whereas both are active for type B.
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Comparison of the Models as Bayesian Classifiers

Generating the Posterior Probabilities

To generate a set of two-state classification problems, we assumed that each state can be
described by a lognormal distribution:

P (S|statei) =
e

−(ln S−µi)
2

2σ2
i√

2πσiS
. [18]

The low state has a sugar distribution with mean µ1 and standard deviation σ1; the high
state has a mean µ2 and standard deviation σ2. We choose µ1 to be either 1, 3, or 5; µ2 to
be either 5.1, 6.6, 8.1, or 9.6; σ1 to be either 0.4, 0.5, 0.6, 0.7, 0.8, or 0.9; and σ2 to be either
1, 1.25, 1.5, 1.75, or 2. All possible combinations of these parameters were considered, and
we chose 50 pairs of distributions that best gave a range of different posterior probabilities
(Fig. 6).
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Fig. 6. The collection of posterior probabilities that were generated as solutions of lognormal
two-state classification problems and used to compare the different genetic models of Fig. 2
as Bayesian classifiers.

Fitting the Models to the Posterior Probabilities

We used a least-square fit to score how well a model matches the posterior probability of the
high state. The residuals plotted in Fig. 2 are the minimum value of the sum of squares:

n
∑

i

[

P (Si|high) − Peff(Si, λ)
]2

, [19]
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where we have n sugar levels Si leading to n points on the posterior probability curve,
P (S|high), we are trying to fit, and Peff(S, λ) is the model prediction for the promoter efficacy.
This prediction is a function of the set of parameters λ: Kr, Kn, Kb, K1, and K2 and Kc

depending on the promoter type. The minimum value of Eq. 19 occurs at the best-fit set of
parameters λ. To ensure that the fitting algorithm considers only non-negative parameters,
we define new variables for each parameter in log space. For example, κ1 = log(K1), and
therefore can range over positive and negative values (3).

To correctly compare the ability of different models to fit a data set, models with more
parameters should be penalized because they have more freedom to match the data. Typical
methods are the Bayes Information Criterion (BIC) (4) and the Laplace method for model
selection (5). With both of these techniques to compare the different models, the results of
Fig. 2D–F were qualitatively unchanged. For the Laplace method, we need the maximum
likelihood of the data (the 100 posterior probability points in our case) given the model. For
each parameter, the maximum likelihood is penalized by a term that is determined by the
error in the best fit value of the parameter and by its prior (5). We use:

(

n
∑

i

[

P (Si|high) − Peff(Si, λ)
]2
)

−

(n−1)
2

[20]

for the likelihood. This distribution results from assuming that the data have normally dis-
tributed errors with zero mean and any non-negative standard deviation (5). It is maximized
when the sum of squares residual, Eq. 19, is minimized.

Parameter Sensitivity

The sensitivities of the parameters were calculated as the mean log gain sensitivities (6) of
the promoter efficacy. For parameter pj , the sensitivity, χj, is

χj =

〈

∂ log Peff

∂ log pj

〉

, [21]

where the angled brackets denote an average over all sugar concentrations. We analytically
calculated the ∂ log Peff/∂ log pj derivative as an implicit function of ∂N0/∂pj and ∂S/∂pj by
differentiating the promoter efficacy, such as Eq. 15 for example. We calculated these last
two derivatives by differentiating Eqs. 10 and 11 with respect to pj and numerically solving
the resulting equations. Sensitivity values are given in Table 1.

Robustness of the Best-Fit Parameters

The fits of the promoter efficacy to the posterior probability curves are robust to changes
in all but two of the parameters specifying each model. To investigate this robustness, we
considered the model that best fit the posterior probability curves of Fig. 6. This model is
transcriptionally controlled by a repressor that has four sugar binding sites. We varied each
parameter individually and calculated the average change in the sum of squares residual, Eq.
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Table 1. Parameter sensitivities for repressor and activator models

Repressor model Activator model
Kt 0.07 0.10
Kn 0.21 0.004
Kb 0.004 0.20
K1 0.07 0.07
K2 0.02 0.04
Kc 0.06 0.04

Parameters are defined in Fig. 2.

19, over all the posterior curves. The results shown in Fig. 7 reflect Table 1: the fit is only
significantly sensitive to Kn, the sugar binding affinity for the non-DNA binding form of the
repressor, and to a much lesser extent to Kt, the affinity describing transitions between the
DNA- and non-DNA binding forms. Nevertheless, the sum of squares residual is so small
for this model that the promoter efficacy curves behave like the posterior probability of Fig.
1C even if the residual is increased 5,000-fold (see Fig. 7 inset). We comment on possible
implications of the high sensitivity to Kn in the text.

Stochastic Simulation

Table 2. Parameter values for the simulation shown in Fig. 3.

Repressor model Activator model
Kr 1.27 (10 s) 1.61 ×106 (10 s)
Kn 9.45 ×105 (10 s) 3.04 ×104 (10 s)
Kb 233 (10 s) 1.33 ×106 (10 s)
K1 3.41 ×106 (0.1 s) 3.62 ×106 (0.1 s)
K2 3.34 ×1010 (0.1 s) 1.51 ×109 (0.1 s)
Kc 88.3 (10 s) 219 (10 s)

These values are association affinities and are the best-fit values of the networks to the posterior

probability of Fig. 1C. Each association affinity is dimensionless because we simulate with numbers

of molecules rather than concentrations. Shown in brackets is the corresponding dissociation rate.

These rates, which are not given by a fit to P (high|S), were chosen so that the network would

respond in a reasonable time to changes in sugar levels.

To confirm that genetic networks can perform inference in real time with a noisy sugar
source, we simulated both a repressor and an activator model with fluctuating sugar levels.
We chose the posterior of Fig. 1C and the repressor and activator model that fit it best
(parameters are given in Table 2).

To generate a relatively smooth time series of sugar levels, we used a Markov chain Monte
Carlo method (5) to sample from the distributions in Fig. 1C (the Metropolis algorithm with
a Gaussian trial distribution). We sample from the low distribution for 104 s, then from
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Fig. 7. Robustness of the sum of squares fit to systematic perturbations in individual model
parameters away from their best-fit values. The model that best fits the posterior probabilities
of Fig. 6 is shown: this model has promoter type C and is negatively regulated by a repressor
with four sugar binding sites. Parameters are defined in Fig. 2. (Inset) An example of the
promoter efficacy curves where Kn is changed by 20%. The curves are very similar despite
the residual for the upper red curve being ≈ 5,000-fold larger than the residual of the original
blue curve.

the high distribution for 104 s, and the again from the low distribution for another 104 s.
For each sugar sample, the cytosolic sugar levels in the simulation are changed to the new
sampled value. A stochastic simulation of the genetic network is then run for a fixed time
interval (either 5, 10, 25, 50, or 100 seconds) by using the Gibson-Bruck version (7) of the
Gillespie algorithm (8). The probability of a given reaction per unit time is equal to the
product of the kinetic rate for the reaction and the number of potential reactants present.
The time steps between reactions obey a Markov process. The cytosolic sugar level is then
resampled by using the Markov chain Monte Carlo method and another Gillespie simulation
run for this new level of sugar. The promoter efficacy plotted in Fig. 3 is the average promoter
efficacy generated during each run of the Gillespie algorithm. Simulations start with one DNA
molecule, 25 transcription factors in the DNA binding state and 25 transcription factors in
the non DNA binding state.

For each choice of sugar sampling interval, we compared the performance of the two net-
works (Fig. 3C and D) to the instantaneous posterior probability (Fig. 3B). The comparison
was scored by measuring the mean over time of the absolute difference between promoter
efficacy and the instantaneous posterior probability. The results are shown in Table 3. Both
networks perform better as the sugar sampling interval increases. As the time period grows
over which the promoter efficacy is averaged, the average more closely matches the posterior
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probability of Fig. 2C (for a long sampling period, the promoter efficacy will match the pos-
terior probability almost perfectly because we use the best fit parameters for the simulation).

Negatively controlled networks consistently performed better because the network is bet-
ter able to use its cooperativity (see the argument given in the text).

Table 3. Comparison scores of the mean absolute difference between the promoter efficacy
and the instantaneous posterior probability of the high sugar state

Sampling interval, s Repressor model Activator model
5 7.0 ×10−2 12.5 ×10−2

10 3.3 ×10−2 6.3 ×10−2

25 3.4 ×10−2 7.4 ×10−2

50 2.8 ×10−2 5.0 ×10−2

100 2.5 ×10−2 4.4 ×10−2

Each score is the average from five simulation runs. A score of zero implies the the promoter efficacy

exactly follows the instantaneous posterior probability. The sampling interval is the time between

the samples of sugar used to generate the sugar time series.

Fitting a Posterior Surface to the Transcription Rate of

the lac Operon

The Inverse Gaussian Classification Problem

A bivariate, or two dimensional, Gaussian distribution is a function of a vector (s1, s2) and
is specified by a mean vector (µ1, µ2) and a 2 × 2 covariance matrix σ. For example, µ1 is
the mean of the s1 variable and σ11 its variance. P (s1, s2) obeys:

P (s1, s2) ∼
1

√

det(σ)
exp



−1

2

∑

i,j

(si − µi)σ
−1
ij (sj − µj)



 , [22]

where σ
−1 is the matrix inverse of σ.

A two-state, bivariate Gaussian classification problem is described by the prior probabil-
ities of the two states, P (II) and P (I) = 1 − P (II); the mean µ

I and covariance matrix σ
I

for s1 and s2 for state I; and the mean µ
II and covariance matrix σ

II for s1 and s2 for state
II. Given an observation of s1 and of s2, the posterior probability of state II is:

P (II|s1, s2) =
P (s1, s2|II)P (II)

P (s1, s2|I)P (I) + P (s1, s2|II)P (II)

=

(

1 +
P (s1, s2|I)P (I)

P (s1, s2|II)P (II)

)

−1

. [23]

Inserting Eq. 22 in Eq. 23 gives:

P (II|s1, s2) =
(

1 +

√

det(σII)

det(σI)
× exp(− 1

2

∑

i,j
(si−µI

i
)(σI)−1

ij
(sj−µI

j
))

exp(− 1
2

∑

i,j
(si−µII

i
)(σII)−1

ij
(sj−µII

j
))
× 1−P (II)

P (II)

)

−1

. [24]
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From the posterior surface P (II|s1, s2), we would like to recover the parameters of the
classification problem: P (II), µ

I, σ
I, µ

II, and σ
II. This recovery is degenerate: different sets

of parameters can result in the same posterior surface. With a little algebra, Eq. 24 can be
reduced to the general form:

P (II|s1, s2) =
[

1 + exp(c0 + c1s1 + c2s2 + c3s1s2 + c4s
2
1 + c5s

2
2)
]

−1
, [25]

where the ci depend on the parameters P (II), µ
I, σ

I, µ
II, and σ

II. Although these parameters
have 11 degrees of freedom [P (II), two each for vectors µ

I and µ
II, and three each for the

covariance matrices σ
I and σ

II], the posterior surface only has six degrees of freedom. The
parameters therefore have five unrecoverable degrees of freedom.

Fitting the Transcription Rate Surface from the lac Operon

To fit the Setty et al. data (9), we used Eq. 25, with s1 corresponding to the logarithm of the
IPTG concentration and s2 corresponding to the logarithm of the cAMP concentration. As
the base of the logarithm and a constant offset can be absorbed by the coefficients ci, we chose
to let s1 ∈ {0, 1, . . . , 5} correspond to the six sample levels of IPTG and s2 ∈ {0, 1, . . . , 9}
correspond to the 10 sample levels of cAMP. We used a simplex search method (fminsearch
in Matlab, Mathworks) to optimize the six parameters c0, c1, . . . , c5 so that the sum-squared
error between Eq. 25 and the lac transcription data was minimized. We used multiple
optimization runs and experimented with different initial conditions, but these factors seems
to have little influence on the outcome of optimization. All or nearly all runs converged
to essentially the same solution, which we therefore take to be close to optimal. The final
parameters found were:

c0 c1 c2 c3 c4 c5

4.09 −1.88 0.15 −0.11 0.32 −0.06

which define the surface shown in Fig. 4B.
There is not a unique two state, bivariate Gaussian discrimination problem corresponding

to these parameters (as described above). Of the many discrimination problem parameter
sets consistent with the optimized ci, we chose one by making the following assumptions:

(σI)−1 =

[

0.4 −c3

−c3 0.3

]

[26]

(σII)−1 = (σI)−1 +

[

2c4 0
0 2c5

]

[27]

µ
I =

[

1.5
3.5

]

[28]

µ
II =

([

−c1

−c2

]

+ (σI)−1
µ

I

)

σ
II [29]

P (II) = (1 + ez)−1 [30]
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where

z = c0 +
1

2
(µI)T (σI)−1

µ
I − 1

2
(µII)T (σII)−1

µ
II +

1

2
log

[

det(σI)

det(σII)

]

, [31]

which results in the distinct lognormal distributions in Fig. 4C. The five parameters unre-
coverable from the posterior surface can be seen in our arbitrary choices for µ

I, the diagonal
elements of (σI)−1, and the off-diagonal elements (zero) added to (σI)−1 to make (σII)−1.
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