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We have reported that cellular retinol-binding pro-
tein-1 (CRBP-1) is transiently expressed by arterial
smooth muscle cells during experimental intimal re-
pair (P. Neuville, A. Geinoz, G. Benzonana, M. Re-
dard, F. Gabbiani, P. Ropraz, G. Gabbiani: Am J Pathol
1997, 150:509-521). We have examined here the ex-
pression of CRBP-1 during wound healing after a full-
thickness rat skin wound. CRBP-1 was transiently ex-
pressed by a significant proportion of fibroblastic
cells including myofibroblasts. Expression started 4
days after wounding, reached a maximum at 12 days,
and persisted up to 30 days when a scar was formed.
After wound closure, most CRBP-1-containing fibro-
blastic cells underwent apoptosis. We have further
investigated CRBP-1 expression in rat fibroblasts cul-
tured from different organs. CRBP-1 was abundant in
lung and heart fibroblasts and was detected in de-
creasing amounts in muscle, tendon, subcutaneous
tissue, and granulation tissue fibroblasts. Dermis fi-
broblasts contained no detectable levels of CRBP-1.
All4rans retinoic acid and transforming growth fac-
tor-B1 inhibited cell proliferation and increased
CRBP-1 expression in fibroblastic populations except
dermis fibroblasts. We demonstrate that during gran-
ulation tissue formation a subpopulation of fibroblas-
tic cells express CRBP-1 de novo. We also demonstrate
that CRBP-1 expression by fibroblasts is regulated in
vitro by retinoic acid and transforming growth factor-
B1. Our results suggest that CRBP-1 and possibly reti-
noic acid play a role in the evolution of granulation
tissue. (Am J Pathol 1997, 151:1741-1749)

It is more and more accepted that fibroblasts from differ-
ent tissues exhibit specific features that reflect differ-
ences in embryological origin, degree of differentiation,
and/or functional activity (for review see Refs. 1-3).
Among the criteria used to classify different fibroblastic
cells, vitamin A storage,* cell surface markers,® and con-

tractile or cytoskeletal protein expression® have proven
very useful. It is also accepted that during wound healing
or fibrocontractive diseases fibroblasts modulate into
myofibroblasts®~8 expressing features of smooth muscle
(SM) cell differentiation. Myofibroblasts are most numer-
ous when wound contraction takes place and disappear
through apoptosis after wound closure.® We have re-
cently shown that cellular retinol-binding protein-1
(CRBP-1) is transiently expressed by arterial SM cells
during the intimal repair reaction after endothelial injury in
rat aorta.’® In the present study, we have investigated
whether CRBP-1 is expressed in fibroblastic cells during
granulation tissue formation after a full-thickness skin
wound in the rat and in fibroblasts cultured from different
organs and from granulation tissue. As retinoids exert
significant effects on a variety of cellular processes in-
cluding growth and differentiation'* and as transforming
growth factor (TGF)-B has been shown to play an impor-
tant role during granulation tissue evolution (for review
see Ref. 12), we have also evaluated whether CRBP-1
expression in different fibroblastic populations is modu-
lated in vitro by all-trans retinoic acid (tRA) and TGF-B1.

Materials and Methods

In Vivo Experimental Procedures

A total of 75 adult female Wistar rats (body weight, 200 to
400 g) were used to produce wounds. The experiments
were approved by the Ethical Committee of Geneva Med-
ical Faculty. Five rats per time point were used. After
anesthetizing with an intraperitoneal injection of Nembu-
tal (Abbott Laboratories, North Chicago, IL), a 2- X 2-cm
skin square was removed from the mid-dorsal surface.
Granulation tissue samples subsequently were collected
for immunohistochemistry at 4, 8, 12, 16, 21, 25, and 30
days and for Northern blot hybridization and Western blot
analysis at 7, 10, 12, and 15 days.
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Immunohistochemistry and in Situ End Labeling

Staining was performed according to previous studies.’©
Double staining was performed for CRBP-1 and a-SM
actin or apoptosis. Briefly, granulation tissues were fixed
in 4% buffered formaldehyde and embedded in paraffin.
After deparaffinization and rehydration, 4-um sections
were treated with 0.5% H,0, in methanol for 10 minutes
at room temperature to inhibit endogenous peroxidase.
After two microwave treatments of 5 minutes each in 10
mmol/L citrate buffer, pH 6.0, sections were preincu-
bated for 15 minutes in 10 mmol/L Tris-buffered saline
(TBS) containing 5% bovine serum albumin (BSA) and
10% normal pig serum and then incubated for 60 minutes
with polyclonal rabbit CRBP-1 antibody.'® This was fol-
lowed by a 30-minute incubation with a biotinylated pig
anti-rabbit IgG antibody. After incubation for 30 minutes
with  horseradish-peroxidase-conjugated streptavidin
(Dako, Glostrup, Denmark), sections were treated with
0.5 mg/ml diaminobenzidine and 0.1% H,0O, for 10 min-
utes. They were then washed in phosphate-buffered sa-
line (PBS) overnight at 4°C. After treatment for 15 minutes
at room temperature with HCI, pH 2.2, and rinsing in
distilled water, sections were incubated for 60 minutes
with monoclonal mouse a-SM actin antibody.'® After a
30-minute incubation with alkaline-phosphatase-conju-
gated rabbit anti-mouse IgG, sections were treated with
fast red substrate for 5 minutes and rinsed in distilled
water. They were then counterstained for 1 minute with
hematoxylin and mounted with Aquatex (Merck, Darms-
tadt, Germany).

In situ end-labeling of DNA fragments for apoptosis
was performed using the terminal deoxynucleotide trans-
ferase nick end-labeling (TUNEL) technique'®'* after
CRBP-1 staining. After treatment for 15 minutes at room
temperature with a buffer containing 30 mmol/L Tris, 140
mmol/L sodium cacodylate, 1 mmol/L cobalt chloride in
0.5% BSA, pH 7.2, sections were incubated for 60 min-
utes with 20 U/ml terminal deoxynucleotidyl transferase
(Boehringer Mannheim, Mannheim, Germany) and 0.01
mmol/L biotin-16-dUTP (Boehringer Mannheim) in the
same buffer. After washing in PBS, sections were incu-
bated for 30 minutes with horseradish-peroxidase-conju-
gated streptavidin (Dako), treated with 0.5 mg/ml diami-
nobenzidine, 0.1% H,0,, and 0.1% cobalt chloride, and
mounted with Aquatex (Merck). Photographs were taken
using a Zeiss Axiophot microscope (Carl Zeiss,
Oberkochen, Germany) with Ektachrome EPY-64T fim
(Eastman Kodak, Rochester, NY).

Fibroblast Culture and Treatment

Fibroblasts were isolated from explants of heart, lung,
muscle, tendon, dermis, and subcutaneous tissue of nor-
mal adult female Wistar rats (body weight, 200 to 300 g).
At least three animals were used for each cell prepara-
tion. Briefly, animals were sacrificed by cervical disloca-
tion after enflurane (Ethrane, Abott Laboratories) anes-
thesia. Heart explants were from the left ventricle, lung
explants were from the periphery of lower lobes, muscle

explants were from soleus, tendon explants were from tail
tendon, and dermis and subcutaneous tissue were taken
from mid-dorsal skin. After washing in Eagle's minimal
essential medium (HyQ, HyClone Europe, Erembode-
gem-Aalst, Belgium) containing 20 mmol/L Hepes buffer
(Gibco, Basel, Switzerland), 1-mm® pieces were cut and
placed in a 10-cm? Petri dish. They were allowed to
attach to the plastic dish for approximately 5 minutes and
then immersed in 10 ml of minimal essential medium
supplemented with 10% fetal calf serum (Seromed, Bio-
chrom KG, Berlin, Germany), 100 1U/ml penicillin, and
100 upg/ml streptomycin (HyQ, HyClone Europe). Ex-
plants were subsequently incubated at 37°C in a humid-
ified atmosphere of 5% CO, and 95% O,. Fibroblasts
migrated from explants after 2 to 7 days, and 2 to 3 weeks
later, explants were removed from Petri dishes. When
cells were confluent after 3 to 4 weeks, they were
trypsinized with 2 ml of 0.25% trypsin (Gibco) and pas-
saged into 10-cm? Petri dishes at a 1:2 split ratio. Some
aliquots of these cells were used as primary cultured
cells. Confluent cells at the fifth passage (P5) as well as
primary cultured (PO) cells were harvested for Western
and Northern blot analyses.

Fibroblastic cells, including myofibroblasts, were also
isolated, by explant technique, from granulation tissue
and granuloma pouch. Cells derived from granulation
tissue were isolated at 7 days (GT-7) and 12 days (GT-
12) after wounding. Granuloma pouch was made by in-
jection of 1% croton oil in corn oil,® and cells were iso-
lated 20 days after oil injection. All investigated cells were
routinely monitored for the absence of mycoplasma con-
tamination.

Confluent cells at P5 were seeded at a density of 5.5 X
10%/cm? and treated with tRA (Sigma Chemical Co., St.
Louis, MO) or recombinant human TGF-B1 (Sigma) for 6
days. tRA was dissolved in pure ethanol at 1 mmol/L and
diluted in complete medium at a final concentration of 1
pmol/L. The medium was changed every 2 days. An
equal amount of ethanol was similarly used as control.
TGF-B1 was dissolved in 4 mmol/L HCI containing 0.1%
BSA and diluted in complete medium at a final concen-
tration of 10 ng/ml. Four days after treatment, cells were
photographed using a Zeiss phase contrast microscope.
Cell counting was performed with a hemocytometer
(Brand, Wertheim, Germany). Cells were then harvested
for Western and Northern blot analyses.

Western Blot

Sample preparation and CRBP-1 or a-SM actin detection
were performed according to previous studies.'®"® For
desmin immunoblotting, 80 ng of total protein was frac-
tionated on a 5 to 20% gradient sodium dodecyl sulfate
(SDS)-polyacrylamide gel electrophoresis and trans-
ferred onto nitrocellulose filter (Schleicher & Schuell, Das-
sel, Germany) as previously described."® After blocking
with 5% nonfat milk in 10 mmol/L TBS for 1 hour, the filter
was incubated for 2 hours at room temperature with
monoclonal mouse desmin antibody (Dako). It was
washed in TBS three times for 5 minutes each and then



incubated for 1 hour with goat anti-mouse IgG conju-
gated with horseradish peroxidase (Nordic Immunologi-
cal Laboratories, Tilburg, The Netherlands) in TBS/0.01%
Triton. The specific binding was enhanced by a chemi-
luminescent method using an ECL kit (Amersham, Zurich,
Switzerland) and detected on Kodak X-OMAT film. Quan-
tification was performed by means of densitometric scan-
ning (Genofit, Geneva, Switzerland).

Northern Blot Hybridization

Total RNA was extracted from cultured cells and granu-
lation tissue using TRI REAGENT (Sigma) according to
the manufacturer’s instructions. Equal amounts of total
RNA were separated by electrophoresis on 1% agarose
gel and then transferred onto a Hybond-N blotting mem-
brane (Amersham) overnight in 20X standard saline ci-
trate (SSC). Steady-state levels of specific RNA species
were visualized by Northern blot hybridization.'® CRBP-1
cDNA probe'® was labeled with [32P]JdCTP (10 mCi/m;
Amersham) using a Megaprime DNA labeling kit (Amer-
sham). Prehybridization and hybridization were per-
formed for 4 and 16 hours, respectively, at 63°C in 5X
SSC, 2.5% Denhardt’s solution (0.02% Ficoll, 0.02% poly-
vinylpyrrolidone, 0.02% BSA), 0.1% SDS, and 100 pg/ml
salmon sperm DNA. Radiolabeled DNA probe was used
at a concentration of 108 cpm per lane. Membranes were
then washed twice with 2X SSC/0.1% SDS for 15 minutes
each at 63°C, and after washing, membranes were ex-
posed to x-ray film (X-OMAT, Kodak) between intensify-
ing screens for 2 days at —80°C.

Statistics

Data are represented as mean values and SD. The num-
ber of experiments (n) is indicated in the Results section.
A Student’s t-test for unpaired samples was used for
statistical analysis. Significant differences were accepted
for P < 0.05.

Results

CRBP-1 Expression in Granulation Tissue
Fibroblasts

To examine the expression of CRBP-1 in granulation tis-
sue, serial sections were stained for general morphology
and immunohistochemical detection of CRBP-1, «-SM
actin, or both. Histological examination of 4-day-wound
tissue sections showed that the granulation tissue con-
tained few fibroblasts, many inflammatory cells, and
some neovessels. Immunohistochemistry revealed that
CRBP-1 expression already was present 4 days after
wounding and was restricted to fibroblastic cells (Figure
1a). At this time, a-SM actin staining was localized exclu-
sively to pericytic or smooth muscle cells of small vessels
(Figure 1b). Eight days after wounding, numerous fibro-
blasts were clearly positive for CRBP-1 but only infre-
quently for a-SM actin (Figure 1, ¢ and d). At 12 days,

CRBP-1 in Wound Healing 1743
AJP December 1997, Vol. 151, No. 6

there was widespread positive fibroblast staining for
CRBP-1 and a-SM actin, and their expression reached a
maximum (Figure 1, e and f). Double staining for CRBP-1
and «a-SM actin at 12 days after wounding revealed co-
localization of both proteins in many myofibroblasts (Fig-
ure 2a). The staining intensity declined thereafter, al-
though a-SM actin decreased more rapidly than CRBP-1.
At 30 days, when the wound was closed and re-epithe-
lialization had occurred, the number of CRBP-1-positive
fibroblasts was diminished compared with previous
stages, and as expected, fibroblasts were negative for
a-SM actin (Figure 1, g and h). Only pericytic and smooth
muscle cells of blood vessels remained positively stained
for a-SM actin.

As described previously,® apoptotic cells initially ap-
peared at 8 days and were maximal at 21 days. Double
staining for CRBP-1 and apoptotic cells was co-localized
in several fibroblastic cells (Figure 2b).

Immunoblot and Northern blot analyses consistently
showed CRBP-1 expression in granulation tissue at 7, 10,
12, and 15 days after wounding (Figure 3). In both cases,
the strongest signal was obtained at 12 days. By densi-
tometric scanning of immunoblots (five experiments per
time), there were 1.9-, 2.7-, and 1.8-fold increases at 10,
12, and 15 days, respectively, compared with 7 days.
Immunoblots for a-SM actin at the same time points
showed that the strongest signal was obtained at 12 days
as well (Figure 3A). a-SM actin expression increased
4.1-, 45-, and 4.4-fold at 10, 12, and 15 days, respec-
tively, compared with 7 days.

CRBP-1 Expression in Fibroblasts Cultured from
Different Organs

Previous reports support a phenotypic heterogeneity of fi-
broblastic cells.2*'” Hence, we have investigated the level
of CRBP-1 expression in cultured fibroblasts derived from
different tissues. CRBP-1 was present at different levels in
all fibroblastic populations examined with the exception of
those from dermis (we performed at least three experiments
per group; see Table 1). In heart and lung fibroblasts there
was an increase of CRBP-1 protein expression between PO
and P5, of 3.4- and 18.1-fold, respectively (Figure 4A). The
CRBP-1 signal of muscle and tendon fibroblasts was lower
than the signal for heart and lung fibroblasts. in muscle and
tendon fibroblasts there was 10.4- and 13.9-fold increase of
CRBP-1 at P5 compared with PO, respectively. Fibroblasts
from subcutaneous tissue as well as GT-7 and GT-12 cells
expressed lower amounts of CRBP-1 at P5 compared with
PO (Figure 4B). The decrease was 2.7-, 6.8-, and 11.4-fold,
respectively. Dermis fibroblasts contained no detectable
levels of CRBP-1 at any time. As reported previously, ®°
cultured fibroblasts expressed different amounts of a-SM
actin according to their origin. All P5 fibroblasts contained
increased amounts of «-SM actin compared with the PO
cultures albeit in different proportions (Table 1). The in-
crease was 2.9-fold in lung fibroblasts, 1.2-fold in heart
fibroblasts, 11.6-fold in muscle fibroblasts, 1.5-fold in ten-
don fibroblasts, 2.0-fold in dermis fibroblasts, and 7.4-fold in
subcutaneous tissue fibroblasts, respectively. The signal for
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Figure 1. Immunolocalization of CRBP-1 (g, ¢, &, and @) and a-SM actin (b, d, f, and h) in granulation tissue fibroblastic cells after wounding. At 4 days, CRBP-1 expression
is restricted to fibroblastic cells (@) and a-SM actin expression is exclusively present in vascular pericytic and SM cells (b). At 8 days, numerous fibroblastic cells are clearly
positive for CRBP-1 (¢), whereas only some are positive for a-SM actin (d). At 12 days, most fibroblastic cells stain for CRBP-1 (€) and -SM actin (f). At 30 days, CRBP-1
expression persists in some fibroblastic cells (g) and a-SM actin expression is again present only in vascular pericytic and SM cells (h). Original magnification, X630.

a-SM actin was very low in PO cells isolated from granulation intensity of desmin signal in lung fibroblasts at P5 was 11.5-fold
tissue at 7 and 12 days. lower compared with cells at PO (n = 6). Thus, fibroblasts from
All tested fibroblasts at PO and P5 were negative for desmin different origins were heterogeneous as far as CRBP-1, a-SM

with the exception of lung fibroblasts (data not shown). The actin, and desmin expression is concerned.
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Figure 2. Double immunostaining for CRBP-1 and a-SM actin 12 days after wounding (a) and for CRBP-1 and apoptotic cells 16 days after wounding (b). In a,
CRBP-1 and a-SM actin are co-localized in numerous fibroblastic cells and appear red-brown due to the mixture of peroxidase and alkaline phosphatase staining.
In b, the nucleus of the apoptotic cell is black, whereas the cytoplasm of this cell as well as of those cells positive for CRBP-1 is brown (arrowhead). Original

magnification, X630.

CRBP-1 Expression after tRA and TGF-
B1Treatment

It is well established that TGF-B1 influences the expres-
sion of «-SM actin in fibroblastic cells in vivo and in
vitro.2°72% We studied the effects of tRA and TGF-B1 in
fibroblastic cells isolated from the aforementioned
sources. In all cases, cell growth was markedly inhibited
by a 6-day treatment with tRA or TGF-B1 (Figure 5). The
cells became large and flattened, and an increase in
number and thickness of stress fibers was induced as
observed by phase contrast microscopy (data not
shown). Cell shape and proliferation were not changed
when fibroblasts were treated with ethanol as control
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Figure 3. Western blot for CRBP-1 and a-SM actin at 7, 10, 12, and 15 days
after wounding (A) and Northern blot for CRBP-1 expression in granulation
tissue at 7, 10, 12, and 15 days after wounding (B). The strongest signal for
CRBP-1 and a-SM actin is obtained at 12 days (A).

(data not shown). tRA and TGF-B1, respectively, inhibited
the proliferation of lung fibroblasts to 56.0 = 10.4% (n =
5) and 53.7 + 6.2% of control values (n = 5), of heart
fibroblasts t0 49.3 = 11.0% (n = 3)and 42.0 = 2.5% (n =
3), of dermis fibroblasts to 58.1 + 29% (n = 6) and
56.0 = 5.0% (n = 6), of subcutaneous tissue fibroblasts
to 47.9 £ 14% (n = 4) and 448 * 2.7% (n = 4), of
muscle fibroblasts to 62.0 = 3.2% (n = 3) and 54.6 =
9.1% (n = 3), of tendon fibroblasts to 47.8 = 3.7% (n =
3) and 37.8 = 2.1% (n = 3), of cells derived from gran-
uloma pouch to 67.0 + 12.4% (n = 3) and 54.6 = 6.4%
(n = 3), and of cells derived from GT-7 and GT-12 to
73.7 £ 49% (n = 3),69.7 + 34% (n = 3), 76.7 = 2.6%
(n = 3), and 48.2 + 1.8% (n = 3). TGF-B1 was more
potent than tRA (Figure 5).

CRBP-1 was expressed in all tested cultured fibro-
blasts with the exception of those isolated from dermis.
By means of Northern blot hybridization and Western blot
analysis, we found that tRA and TGF-B1 stimulated
CRBP-1 mRNA and protein expression in all CRBP-1-
positive cells examined, albeit in different proportions.
CRBP-1 expression after 6 days of tRA and TGF-81 ex-
posure was, respectively, increased 13.8-fold and 8.1-
fold in lung fibroblasts (n = 4), 9.3-fold and 3.2-fold in
heart fibroblasts (n = 2), 6.6-fold and 2.7-fold in muscle
fibroblasts (n = 3), 7.8-fold and 4.4-fold in tendon fibro-
blasts (n = 3), 10.9-fold and 5.4-fold in subcutaneous

Table 1. CRBP-1 and a-SM Actin Levels in Cultured
Fibroblasts Evaluated by Means of Western
Blotting and Densitometric Scanning
CRBP-1 a-SM actin
Tissue PO P5 PO P5
Lung +/— +++ +  +++
Heart ++ ++4+ ++ +++
Muscle + ++ +H/— +++
Tendon +  ++ ++ +++
Dermis - - ++ +++
Subcutaneous tissue ++ o+ + 4+
Granulation tissue at 7 days ++ +/- +/-  +

Granulation tissue at 12 days  ++ +/— +/— ++

—, no signal; +/—, traces; +, weak signal, ++, moderate signal;
+++, strong signal. There were at least three experiments per group.
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Figure 4. CRBP-1 expression evaluated by Western blot is increased at the
fifth passage (P5) compared with the primary culture (PO) in fibroblasts
derived from heart and lung (A) and decreased in fibroblasts derived from
subcutaneous tissue (SC) and granulation tissue (GT) at 12 days (B).

tissue fibroblasts (n = 4), 7.3-fold and 6.8-fold in granu-
loma pouch fibroblasts (n = 2), 10.0-fold and 4.3-fold in
GT-7 cells (n = 2), and 14.0-fold and 2.0-fold in GT-12
cells (n = 2) (Figure 6). Interestingly, stimulation by
TGF-B1 was lower compared with tRA in all cases.
TGF-B1 increased a-SM actin protein levels in all tested
cells (1.7-fold to 2.9-fold; at least two independent exper-
iments were performed for each cell type) with the ex-
ception of heart fibroblasts in which the level of a-SM
actin was very high in control cells. Interestingly, a-SM
actin expression in dermis fibroblasts, subcutaneous tis-
sue fibroblasts, GT-12 cells, and granuloma pouch fibro-
blasts decreased to 79% (n = 4), 86% (n = 3), 83% (n =
3), and 63% (n = 2), respectively, on tRA treatment
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Figure 5. Histogram showing the proliferation evaluated by cell counting 7
days after plating of fibroblasts derived from lung, heart, dermis, subcutane-
ous tissue (SC), muscle, tendon, granuloma pouch (GPMF), and granulation
tissue at 7 days (GT-7) and 12 days (GT-12) after wounding. The levels of cell
proliferation inhibition are compared with 100% of control samples. Control,
no treatment; tRA, 1 umol/L tRA treatment; TGF-B1, 10 ng/ml TGF-B1
treatment. Ethanol treatment did not change cell proliferation, whereas both
tRA and TGF-B1 always significantly decreased proliferation compared with
controls (*P < 0.05; *P < 0.01).
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Figure 6. Histogram showing CRBP-1 expression in fibroblasts derived from
lung, heart, muscle, tendon, subcutaneous tissue (SC), granuloma pouch
(GPMF), and granulation tissue at 7 days (GT-7) and 12 days (GT-12) after
wounding by laser densitometry of the autoradiograph of Western blots. The
data represent mean values of two to four independent experiments. The
expression in control cells is normalized to 100%. Control, no treatment;
ethanol, ethanol vehicle control; tRA, 1 umol/L tRA treatment; TGF-B1, 10
ng/ml TGF-B1 treatment. Both tRA and TGF-B1 increase CRBP-1 expression.

(Figure 7A). This effect did not occur in other fibroblasts
(Figure 7B). .

Discussion

The recent observation'® that CRBP-1 is transiently ex-
pressed by arterial smooth muscle cells during the intimal
repair reaction after endothelial injury of the rat aorta has
suggested that this protein and therefore RA play a role in
tissue repair. We have used here a more classical model,
ie, the full-thickness skin wound, to examine the presence
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Figure 7. Western blot for CRBP-1 and a-SM actin in fibroblasts derived from
granulation tissue (A) at 12 days after wounding (GT-12) and from lung (B).
C, control; E, ethanol vehicle control; R, tRA; T, TGF-B1. tRA decreases a-SM
actin expression in GT-12 but does not affect lung fibroblasts, whereas
TGF-B1 increases a-SM actin expression in both cases. Both tRA and TGF-B1
increase CRBP-1 expression.



of CRBP-1 during granulation tissue evolution. As in ar-
terial repair, CRBP-1 is transiently expressed by a subset
of cells that appears very early in the healing process and
disappears, at least in part through apoptosis, after
wound closure. Most if not all these cells are myofibro-
blasts, as assessed by the presence of a-SM actin. The
temporary expression of CRBP-1 by arterial SM cells
during arterial repair and by myofibroblasts during skin
wound healing supports the possibility that CRBP-1 and
consequently retinoids play a role in these repair phe-
nomena.

When grown in vitro, fibroblasts from different origins
exhibit different growth properties despite their stereo-
typed morphology.®2* For example, cultured fibroblasts
can modulate into myofibroblast-like cells.2® It is well
established that myofibroblasts (as well as fibroblasts)
are heterogeneous as far as expression of cytoskeletal
proteins such as vimentin, desmin, a-SM actin, and SM
myosin heavy chain is concerned." We demonstrate here
that CRBP-1 is expressed in different amounts in fibro-
blasts cultured from several locations. During subculture,
when it is expressed, CRBP-1 is either increased (eg, in
lung, heart, muscle, and tendon fibroblasts) or de-
creased (eg, in subcutaneous and granulation tissue fi-
broblasts) compared with primary culture. Interestingly,
cultured dermis fibroblasts contain no detectable levels

~of CRBP-1 at any time. In all cases, a-SM actin is in-

creased. Presently, we have no explanation for these
different responses, but they possibly correspond to dif-
ferent functional activities of fibroblastic cells from differ-
ent locations. The comparable behavior of fibroblasts
cultured from granulation tissue at 7 or 12 days after
wounding with those cultured from subcutaneous tissue
reflects the origin of most granulation tissue fibroblasts
from subcutaneous tissue in our experimental model.
These results reinforce the concept of fibroblast hetero-
geneity.'3

tRA is a potential regulator of a large number of genes
that may play a role in situations where myofibroblasts
are involved. Among them, cellular fibronectin isoforms,
which have been reported as a potential inducer of the
myofibroblastic phenotype,?® are down-regulated in fi-
broblasts treated by tRA.2” Matrix metalloproteinases are
also target genes of tRA and are important mediators of
cell proliferation and movement. Recently it has been
shown that tRA up-regulates stromelysin-3 in myofibro-
blasts of the stroma reaction to mammary carcinoma®®

whereas it down-regulates matrix metalloproteinases in
other cell types.2®3° This further implicates tRA in the
overall wound healing process. CRBP-1 expression ap-
pears useful for the classification not only of the different
myofibroblasts but also of fibroblasts from many sources,
although not dermis, which may also reflect their respon-
siveness to retinoids.

Mesenchymal cells may be more responsive to retinol
than to tRA.3" Nonetheless, we choose to compare the
response of fibroblasts from different sources to tRA to be
sure that the effects we observed were not affected by
the ability of retinol to affect intracellular levels of CRBP-1.
Additionally, the conversion rate of retinol to tRA may vary
from one fibroblast type to another. tRA is one of the
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mediators of vitamin A action, and its direct effect on the
nucleus ensures that cells in all cases were subjected to
the same concentration of retinoid.

It has been shown that tRA-mediated CRBP-1 up-reg-
ulation is a direct effect of tRA on gene transcription that
is elicited without any new protein synthesis and is me-
diated through a direct binding of the Retinoic Acid Re-
ceptor a-Retinoid X Receptor a (RARa-RXRa) complex to
the RA-responsive element of the CRBP-1 promoter.3233
This may well be the explanation for our in vitro results. At
the same time, CRBP-1 is not up-regulated by tRA in
dermis fibroblasts, indicating that such a proposed
mechanism does not universally apply.

TGF-B1 transcriptionally stimulates the expression of
RARa and RXRa genes in an osteoblastic cell line.3* It is
conceivable that the same mechanisms of RARa-RXRa
transcriptional activity stimulation plays a role in fibro-
blasts. These effects of TGF-B1 also point to an important
relationship with tRA.

It has been suggested before that there are interac-
tions between tRA and TGF-B1.%° We show here that tRA
and TGF-B1 significantly inhibit proliferation of all inves-
tigated fibroblasts in vitro. This is consistent with previous
findings from studies of a variety of cell types.®6—3® Ex-
pression of active TGF-B isoforms occurs directly or in-
directly after tRA treatment in a wide variety of cell types,
such as human tumor cell lines,®*®~*' mouse keratino-
cytes,*2 and rat prostatic epithelial cells.*® tRA up-regu-
lates TGF-B1 and TGF-B2 in rat and mouse mesenchymal
stem cell lines** and TGF-B2 in rat kidney fibroblasts and
human lung carcinoma cells.*® In these systems, the
induction of TGF-B1 expression is post-transcriptional;
however, sequences that mediate tRA activation recently
have been identified in the TGF-B1 gene promoter al-
though a typical RA-responsive element was not found.*’
The ability of tRA to inhibit rat NRP-152 cell growth was
blocked more than 95% by a monoclonal antibody raised
against TGF-1.#® Using TGF-B1 antisense oligonucleo-
tides or TGF-B1 neutralizing antibodies, Turley et al*®
demonstrated that the expression of autocrine TGF-g1 in
HL-60 cells induced by tRA was partially blocked. These
observations suggest that tRA-induced fibroblast growth
arrest depends in part on the increase of autocrine
TGF-B. This may not be the case for all cell types how-
ever, as in chicken embryo fibroblasts, tRA treatment has
no effect on TGF-B secretion.*”

We have observed that tRA is able to both inhibit
fibroblast proliferation and increase CRBP-1 at the same
time whereas in vivo CRBP-1 is increased when cell pro-
liferation is elevated. The same issue exists for TGF-B1: in
vitro TGF-B1 reduces cell proliferation and up-regulates
a-SM actin, whereas in vivo TGF-B1 is present when a-SM
actin is accumulating but when cell proliferation is max-
imal. There could be several explanations for these dif-
ferences. For example, many tissue factors and matrix
elements that may modulate the effects of tRA and
TGF-B1 simply are not present in vitro. Furthermore, these
differences also may be due to differences in the con-
centration of tRA and TGF-B1 in vivo and in vitro.

As retinoids and TGF-B1 have been implicated in bio-
logical events related to myofibroblast evolution, we ex-
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pected that both agents similarly would affect CRBP-1
and a-SM actin expression in cultured fibroblasts. Our
results show that this is only partially the case. Both tRA
and TGF-B1 induce growth inhibition and up-regulate
CRBP-1 protein and mRNA. This is the first report show-
ing that TGF-B1 increases CRBP-1 synthesis, although
additional studies are needed to extend these observa-
tions to in vivo situations. tRA and TGF-B1, however, af-
fected a-SM actin expression differently; TGF-81 always
up-regulated, whereas tRA never up-regulated and even
decreased a-SM actin expression in several fibroblastic
populations. These results suggest a partial converging
action of tRA and TGF-B1 on signaling pathways that
affect fibroblast phenotypic modulation rather than an
effect of tRA solely mediated by synthesis and secretion
of TGF-B1.

Fibroblast activation is a limiting step for granulation
tissue formation*® and is influenced by various agents.’
Among these, TGF-B1 plays a fundamental role in wound
healing*®-%° and is involved in the phenotypic modulation
of fibroblasts during granulation tissue formation.2%-5" It is
tempting to speculate that the early in vivo expression of
CRBP-1 followed by «-SM actin is also due to TGF-B1.
TGF-B1 is present early after wounding.52 Our in vitro
experiments show that TGF-B1 increases both CRBP-1
and «-SM actin in subcutaneous tissue fibroblasts,
whereas tRA increases CRBP-1 but down-regulates
a-SM actin expression in the same cells. It is noteworthy
that at later stages most fibroblastic cells retain the ca-
pacity of expressing CRBP-1 in the period during which
myofibroblast apoptosis is occurring. This sustained ex-
pression may be due to tRA inasmuch as at this time
a-SM actin starts to disappear. Moreover, it is well known
that the presence of CRBP-1 may increase tRA content
by stimulating oxidation of vitamin A.5354 It has also been
demonstrated that retinoids are responsible for apoptosis
production in several cell types.55® This is compatible
with the possibility that retinoids induce genes involved in
programmed cell death of myofibroblasts. Overall, our
findings suggest that the early increase of CRBP-1, prob-
ably by TGF-B1 stimulation, can be considered as a
marker of activation and differentiation of granulation tis-
sue fibroblasts and that the accumulation of CRBP-1 may
increase tRA, which consequently may then modulate the
late evolution of granulation tissue. This is consistent with
the aforementioned findings that tRA may down-regulate
expression of proteins, such as cellular fibronectin iso-
forms,?” that are inducers of the myofibroblastic pheno-
type.2® It would be of interest in these regards to study
the possible presence of CRBP-1 in myofibroblasts dur-
ing human normal and pathological wound healing or
during other situations such as fibroses and stroma re-
action to epithelial tumor where myofibroblasts have
been shown to be present and to play an important role in
retraction phenomena and in extracellular matrix produc-
tion.%”

In conclusion, we show here that CRBP-1 is a marker of
activation and differentiation of fibroblastic cells during
granulation tissue formation. CRBP-1-containing fibro-
blasts appear to accumulate actively during the initial
steps of wound repair and disappear later through apo-

ptosis. Thus, CRBP-1 expression reflects fibroblast het-
erogeneity and is a useful additional marker for the clas-
sification of different myofibroblastic subsets. In vitro
studies indicate that tRA stimulates CRBP-1 production
by fibroblasts from many but not all sources and that
TGF-B1 exerts a similar effect. Our results suggest that
CRBP-1 and tRA play a role in the evolution of granulation
tissue. This knowledge may be useful to design agents
with the potential of influencing pathological wound heal-
ing as well as fibrocontractive diseases.
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