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Supporting Text

Effect of MgATP and Pi on Tension

Similar to the fwmax dependencies, maximal Ca2+-activated isometric tension (Tmax) of IFI

and EMB fibers exhibited qualitative differences in response to MgATP and almost opposite

dependencies on Pi. For both fiber types Tmax decreased exponentially with increasing [MgATP]

(Fig. 4A).  However, an approximate 4-fold higher concentration of MgATP was required to

reach a level of saturation in IFI fibers (5-10 mM) than in EMB fibers. Tmax of IFI fibers was

relatively insensitive to [Pi] at saturating levels of MgATP (15-20 mM) (Fig. 4B), whereas at 5

mM MgATP, Tmax increased 20% as Pi was raised from 0 to 16 mM. The increase in tension is

most likely due to competition between Pi and MgATP for A.M. (see Fig. 3C) during the

MgATP induced detachment step. The unusually low affinity of IFI myosin for MgATP causes

this effect to be prominent in IFI muscles. In contrast, EMB Tmax declined by 30% over the same

range of [Pi], showing the same inhibitory effects of Pi usually observed in vertebrate skeletal

and cardiac muscle (1-5).

Sinusoidal Length Perturbation Analysis

Fig. 5 illustrates the method of sinusoidal analysis (details are reported elsewhere (6, 7)).

At top, small amplitude sinusoidal length perturbations are applied and the phase and amplitude

relation between the applied length change (ΔL) and resulting force change (ΔF) were measured

over a range of frequencies (f = 0.5-1000 Hz). Small amplitude length changes (0.25% muscle

length (ML) peak to peak) were used as above 0.50% ML the force response becomes markedly

non-linear with muscle length sinusoidal perturbation (unpublished observations, D.W.M.), the
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application of which would have made our analysis inaccurate. The complex modulus y(f) is

calculated as the ratio of tension change (ΔF divided by fiber cross-sectional area) and the

fractional change in muscle length (ΔL/Lo, equal to 0.00125 under our standard conditions). In

the exemplar Nyquist plot shown at bottom right, the viscous modulus (the 90o out-of-phase

component of y(f)) is plotted versus elastic modulus (the in-phase component of y(f)). We

deconvolve the Nyquist plot to yield components A, B and C, where y(f) = A (2π if /α)k - B if

/(b+if) + C if /(c+if), where i = , α = 1 Hz, and k is a unitless exponent. Coefficients A, B

and C are the magnitudes of A, B, and C, expressed as mN per mm2 fiber cross-sectional area.

The characteristic frequencies of B and C are b and c, expressed in Hz. Note that the viscous

modulus of B is negative, which denotes work-producing cross-bridge processes, whereas the

viscous modulus of C is positive, which denotes work-absorbing cross-bridge processes. Work (J

m-3) is equal to π Ev (ΔL/L)2, where Ev is the viscous modulus, and ΔL/L is the amplitude of the

sinusoidal length change divided by the length of the fiber between the two T-clips. Power (W

m-3) is equal to frequency (f) times π Ev (ΔL/L)2.

Adequacy of the MgATP Regeneration System

We investigated whether differences in ability to adequately buffer MgATP might

contribute to the 8-fold higher [MgATP] required to saturate IFI fiber kinetics compared to that

of EMB. The different response to [MgATP] between IFI and EMB fibers would be expected to

occur if the creatine phosphate/creatine kinase (CP/CK) MgATP regeneration system is able to

maintain adequate levels of MgATP (and/or is able to keep MgADP levels near zero) inside

EMB fibers, but is not able to do so in IFI which may have a much higher ATPase rate. To test
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the adequacy of the buffer system, we increased [CP] step-wise from 1 to 50 mM, with [CK] at

900 U/ml (Fig. 6). We used the frequency of maximum power output, fWmax, as a kinetic

parameter particularly sensitive to MgATP and MgADP levels. At 5, 7.5 and 10 mM MgATP,

CP concentrations equal to or less than 15 mM limited fwmax, but above 20 mM CP, the

regeneration system was adequate since no further effect of increasing [CP] on fwmax was

observed. Varying [CK] (300-900 U/ml) had a minor effect on kinetics at 5 mM MgATP, with

no effect at higher MgATP concentrations. At CP > 20 mM and MgATP > 10 mM, fWmax did not

depend on fiber diameter (correlation coefficient, r2 < 0.5). Together, these results indicate that

the IFI and EMB kinetic differences can not be explained by diffusion limitations or inadequate

buffering of MgATP and MgADP levels.

Determining the Position of the Rate-Limiting Step from the Calculated Responses of Eight

Cross-Bridge Models to Changes in [MgATP] , [MgADP], and [Pi].

Following the method of Zhao & Kawai (8), we obtained steady-state solutions of 8

alternate versions of the cross-bridge scheme (main text Table 1) that differed only in the

position of the rate-limiting step. The steady state solution was obtained by assuming that, for

each version, the following steps are approximated by the mass action law:

Scheme Steps obeying mass action Rate limiting step
1 4,1 1
2 8,4,1 2
3 8,1 3
4 8,4,1 4
5 8,4,1 5
6 8,4,1 6
7 8,4 7
8 8,4,1 8
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Let each state in the cross-bridge scheme be represented as a probability of occupancy, i.e.:

Scheme State Probability of
occupancy (Xn)

1 A.M X1
A.M.T X2
A.M.T* + M.T + M.D.P + A.M.D.P X34
A.M.D.P* X5
A.M.D X0

2 A.M X1
A.M.T X2
A.M.T* + M.T + M.D.P + A.M.D.P X34
A.M.D.P* X5
A.M.D X6
A.M.D* X0

3 A.M* X1
A.M.T X2
A.M.T* + M.T + M.D.P + A.M.D.P X34
A.M.D.P* X5
A.M.D X6
A.M X0

4 A.M X1
A.M.T X2
A.M.T* + M.T + M.D.P + A.M.D.P X34
A.M.D.P* X5
A.M.D X0

5 A.M X1
A.M.T* X2
A.M.T** + M.T + M.D.P + A.M.D.P X34
A.M.D.P* X5
A.M.T X6

6 A.M X1
A.M.T X2
A.M.T* + M.T X3
M.D.P + A.M.D.P X4
A.M.D.P* X5
A.M.D X0

7 A.M X1
A.M.T X2
A.M.T* + M.T + M.D.P + A.M.D.P X34
A.M.D.P* X5
A.M.D.P** X6
A.M.D X0

8 A.M X1
A.M.T X2
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A.M.T* + M.T + M.D.P + A.M.D.P X34
A.M.D.P* X5
A.M.D X6

where A = actin, M = myosin, T = MgATP, D = MgADP, and P = inorganic phosphate. The sum

of Xn = 1 for each scheme.

Composite state X34 (including X3 and X4) does not support force, whereas the other states do, so

transitions into or out of X34 manifest as changes in dynamic stiffness (6, 8). Sinusoidal length

change analysis perturbs strain-sensitive elementary rate constants (6). The instability produces a

shift to a new steady-state distribution of cross-bridge states that is observed as tension transients

in length-jump analysis and as exponential processes in sinusoidal analysis (2, 8, 9). Given

independent variables T, D and P, their corresponding association constants KT, KD, and KP, and

the elementary rate constants k2, k-2, k4 and k-4, it follows from Zhao & Kawai (8):

Scheme 1: IFI Myosin, Rate-Limiting Step Is Phosphate Release

                  D               T                                                                                        P
                                           KT                    k2                         k4
X0                     X1                      X2                      X34                      X5                   X0
             KD                                                 k-2                        k-4                      kP

Assuming that kP << other rate constants,
  .        .         .     

X0 + X1 + X2  =  – k2X2 + k-2X34 (1)
                              .

      X34           =  k2X2 – (k-2 + k4)X34 + k-4X5 (2)
                              .

      X5           =  k4X34 – k-4X5 (3)

           and

KT=X2/TX1 (4)



 

6

KD=X0/DX1 (5)

Where Xn is the probability of each state, T=[MgATP2-], D=[MgADP1.5-], and P=[Pi].

Express X0 and X1 in terms of X2, X34, and X5:

(4) X1 = X2/KTT (6)

(5+4) X0 = X1 KDD = X2 KDD/KTT (7)

let 1/η  ≡  1 + 1/KTT + KDD/ KTT (8)

dt
d  = –   (9)

Eigen equation:

r3 – (ηk2 + k-2 + k4 + k-4) r2 + (ηk2k-4 + k-2k-4 + ηk2k4)r  =  0 (10)

Therefore r1         =  0 (11)

r2 + r3  =  ηk2 + k-2 + k4 + k-4 (12)

r2r3      =  ηk2k4 + ηk2k-4 + k-2k-4 (13)

If   ηk2 + k-2  >>  k4 + k-4

Then, r2  ≈  ηk2 + k-2 (14)

And r3  ≈  (ηk2k4 + ηk2k-4 + k-2k-4)/(ηk2 + k-2)

    =  [ηk2/(ηk2 + k-2)] k4  +  k-4 (15)

where, again 1/η  ≡  1 + 1/KTT + KDD/ KTT (8)

Predictions:

When T=0, r2 = k-2
When T=∞, r2 = k2 +k-2
Thus r2 (i.e., 2πc) increases with increasing T

r2 (i.e., 2πc) is independent of P since no P term in equations 14 or 8
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When D=∞, r2 = k-2
When D=0, r2 = k2 [(1/(1+ 1/KT T)] + k-2
Thus r2 (i.e., 2πc) decreases with increasing D

When T=0, r3 = k-4
When T=∞, r3= k4 / [1/(1+k-2/k-2 )] + k-4
Thus r3 (i.e., 2πb) increases with increasing T

r3 (i.e., 2πb) is independent of P since no P term in equations 15 or 8

When D=0, r3= [k2/( k2+ k-2(1+1/KT T)] k4 + k-4
When D=∞, r3= k-4
Thus r3 (i.e., 2πb) decreases with increasing D

Scheme 2: EMB Myosin, Rate-Limiting Step Is an Isomerization Before MgADP Release

                  D               T                                                                                        P
                                           KT                    k2                         k4                                            k6
X0                      X1                      X2                      X34                      X5                      X6                      X0
             KD                                                 k-2                        k-4                      KP

Assuming that k6 << other rate constants,
  .        .         .     

X0 + X1 + X2  =  – k2X2 + k-2X34 (1)
                              .

      X34           =  k2X2 – (k-2 + k4)X34 + k-4X5 (2)
                           .       .

   X5 + X6       =  k4X34 – k-4X5 (3)

           and

KD=X0/DX1 (4)

KT=X2/TX1 (5)

KP=X5/PX6 (6)

Where Xn is the probability of each state, T=[MgATP2-], D=[MgADP1.5-], and P=[Pi].

(5) X1 = X2/KTT (7)

(4+5) X0 = (KDD/KTT)X2 (8)
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(6) X6 = X5/KPP (9)

let η  ≡  KTT / (1 + KDD + KTT) (10)

and ξ  ≡  KPP / (1 + KPP) (11)

dt
d
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Eigen equation:

r3 – (ηk2 + k-2 + k4 + ξk-4) r2 + (ηk2k4 + ηk2ξk-4 + k-2ξk-4)r  =  0 (13)

Therefore r1         =  0 (14)

r2 + r3  =  ηk2 + k-2 + k4 + ξk-4 (15)

r2r3      =  ηk2k4 + ηk2ξk-4 + k-2ξk-4 (16)

If   ηk2 + k-2  >>  k4 + ξk-4

Then, r2  ≈  ηk2 + k-2 (17)

And r3  ≈  (ηk2k4 + ηk2ξk-4 + k-2ξk-4)/(ηk2 + k-2)

    =  [ηk2/(ηk2 + k-2)] k4  +  ξ k-4 (18)

where, again η  ≡  KTT / (1 + KDD + KTT) (10)

and ξ  ≡  KPP / (1 + KPP) (11)

Predictions:

When T=∞, r2 = k2 +k-2
When T=0, r2 = k-2
Thus r2 (i.e., 2πc) increases with T

When P=0 and ∞, r2= k2 [(KD D /KT T) + 1/KT T +1)] + k-2
Thus r2 (i.e., 2πc) is independent of P

When D=∞, r2=k-2
When D=0, r2= k2 [KT T / (1+ KT T)] + k-2;
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Thus r2 (i.e., 2πc) decreases with D

When T=0, r3 = k-4 KP P /(KP P +1)
When T=∞, r3= k4 / [(k-2/k-2 )( KD D /KT T) + 1/KT T +1)]
Thus r3 (i.e., 2πb) increases with T

When P=0, r3= k4 / [1+(k-2/k-2)(KD D /KT T) + 1/KT T +1)]
When P=∞, r3= k4 / [1+(k-2/k-2)(KD D /KT T) + 1/KT T +1)] + k-4
Thus r3 (i.e., 2πb) increases with P

When P=0, r3= (k4  + k-4  )( KT T/ (1 +KT T)
When P=∞, r3= k-4   KT T/ (1 +KT T)
Thus r3 (i.e., 2πb) decreases with D

Scheme 3: Rate-Limiting Step Before MgATP Release

Assuming that k0 << other rate constants,
  .       . 

X1 + X2   =  – k2X2 + k-2X34 (1)
                        .

X34    =     k2X2 – (k-2 + k4)X34 + k-4X5 (2)
                        .       .        .

X5 + X6 + X0    =     k4X34 – k-4X5 (3)

           and

KT = X2/TX1 (4)

KP = X5/PX6 (5)

KD = X6/DX0 (6)

Where Xn is the probability of each state, T=[MgATP2-], D=[MgADP1.5-], and P=[Pi].

Express X0, X1, and X6 in terms of X2, X34, and X5:

(4)  X1 = X2/KTT (7)

k4k2

X2 X34 X5 X6 X0

DP

k-2 k-4
KDKP

X1

KT
T

k0

X1
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(5)  X6 = X5/KPP (8)

(6+8) X0  = (1/KDD)X6 =  (1/(KPPKDD))X5  (9)

let ξ  ≡  KTT/(KTT +1) (10)

and η  ≡  KDD KPP/(KDD KPP + KDD + 1) (11)

then

dt
d
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Eigen equation:

r3 – (k4 + ηk-4 + ξk2  + k-2)r2 + (ξk2ηk-4 + k-2ηk-4 + ξk2k4)r  =  0 (13)

Therefore r1         =  0 (14)

r2 + r3  =  ξk2  + k-2 + k4 + ηk-4 (15)

r2r3       =  ξk2ηk-4 + k-2ηk-4 + ξk2k4 (16)

If   ξk2  + k-2  >>  k4 + ηk-4

Then, r2  ≈  ξk2  + k-2  (17)

And r3  ≈  (ξk2ηk-4 + k-2ηk-4 + ξk2k4)/(ξk2  + k-2) 

    =  σk4 + ηk-4 (18)

where σ  ≡  ξk2 /(ξk2 + k-2) (19)

and, again, ξ  ≡  KTT/(KTT +1) (10)

and η  ≡  KDD KPP/(KDD KPP + KDD + 1) (11)

Predictions:

When T=0, r2 = k-2
When T=∞, r2 = k2 +k-2
Thus r2 (i.e., 2πc) increases with T

r2 (i.e., 2πc) independent of P and D
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When T=0, r3 = σk-4

When T=∞, r3= [k2/(1+k-2)] k4 + σk-4
Thus r3 (i.e., 2πb) increases with T

When P=0, r3= [ξk2/(ξ + k-2)] k-4 
When P=∞, r3= [ξk2/(ξ + k-2)] k-4   +  k-4
Thus r3 (i.e., 2πb) increases with P

When D=0, r3= [ξk2/(ξ + k-2)] k-4 
When D=∞, r3= [ξk2/(ξ + k-2)] k-4   + [KPP/(KDD KPP + 1)] k-4
Thus r3 (i.e., 2πb) increases with D

Scheme 4: Rate-Limiting Step MgATP Binding

Assuming that kT << other rate constants,
  . 

X2   =  – k2X2 + k-2X34 (1)
                        .

X34  =     k2X2 – (k-2 + k4)X34 + k-4X5 (2)
                        .       .        .

X5 + X0 + X1    =     k4X34 – k-4X5 (3)

           and

KP = X5/PX0 (4)

KD = X0/DX1 (5)

Where Xn is the probability of each state, T=[MgATP2-], D=[MgADP1.5-], and P=[Pi].

Express X0 and X1 in terms of X2, X34, and X5:

(4)  X0 = X5/KPP (6)

(5+6) X1  = (1/KDD)X0 =   X5 /(KPP KDD) (7)

k4k2

X2 X34 X5 X0

DP

k-2 k-4 KDKP

X1

T

kT

X2
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let η  ≡  1/(1+ 1/(KDD KPP) + 1/(KPP)) (8)

then

dt
d
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Eigen equation:

 r3 + (k4 + ηk-4 + k2 + k-2)r2 + (ηk2k-4 + ηk-2k4 + k2k4)r  =  0 (10)

Therefore r1         =  0 (11)

r2 + r3  =  k4 + ηk-4 + k2 + k-2 (12)

r2r3       =  ηk2k-4 + ηk-2k4 + k2k4 (13)

If   k2  + k-2  >>  k4 + ηk-4

Then, r2  ≈  k2  + k-2  (14)

And r3  ≈  (ηk2k-4 + ηk-2k4 + k2k4)/(k2  + k-2) (15)

where, again η  ≡  1/(1+ 1/(KDD KPP) + 1/(KPP)) (8)

Predictions:

When P=0 & ∞ r2 = k2 + k-2
Thus r2 (i.e., 2πc) independent of T, P, and D

When T=0 & ∞ r3 = (ηk2k-4 + ηk-2k4 + k2k4)/(k2  + k-2)
Thus r3 (i.e., 2πb) independent of T

When P=0, r3= k2k4/(k2  + k-2)
When P=∞, r3= (k2k-4 + k-2k4  + k2k4) / (k2  + k-2)
Thus r3 (i.e., 2πb) increases with P

When D=0, r3= k2k4/(k2  + k-2)
When D=∞, r3= [[(k2k-4 + k-2k4) / (1 + 1/KP P)] + k2k4] /(k2  + k-2)
Thus r3 (i.e., 2πb) increases with D

Scheme 5: Rate-Limiting Step After MgATP Binding
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Assuming that k6 << other rate constants,
  .       

X2   =  – k2X2 + k-2X34 (1)
                        .

X34  =     k2X2 – (k-2 + k4)X34 + k-4X5 (2)
                        .       .        .       .

X5 + X0 + X1 + X6  = k4X34 – k-4X5 (3)

           and

KP = X5/PX0 (4)

KD = X0/DX1 (5)

KT = X6/TX1 (6)

Where Xn is the probability of each state, T=[MgATP2-], D=[MgADP1.5-], and P=[Pi].

Express X0, X1, and X6 in terms of X2, X34, and X5:

(4) X0 = X5/KPP (7)

(5+7) X1 = X0/KDD = X5 /(KPP KDD) (8)

(6+8) X6  = X1 KTT = X5 KTT /(PPP KDD) (9)

let 1/η  ≡  1 + 1/KPP + 1/(KPP KDD) +  KTT /(KPP KDD) (10)

then

dt
d
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Eigen equation:

r3 + (k4 + ηk-4 + k2 + k-2 )r2 + (ηk2k-4 + ηk-2k-4 + k2k4)r  =  0 (12)

k4k2

X2 X34 X5 X0 X1 X6

P Dk-2 k-4

KP KD KT

T

X2
k6
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Therefore r1         =  0 (13)

r2 + r3  =  k4 + ηk-4 + k2 + k-2 (14)

r2r3      =  ηk2k-4 + ηk-2k-4 + k2k4 (15)

If   k2 + k-2  >>  k4 + ηk-4

Then, r2  ≈  k2 + k-2 (16)

And r3  ≈  (ηk2k-4 + ηk-2k-4 + k2k4)/(k2 + k-2)

    =  σk4 + ηk-4 (17)

where σ  ≡  k2 /(k2 + k-2) (18)

and, again 1/η  ≡  1 + 1/KPP + 1/(KPP KDD) +  KTT /(KPP KDD) (10)

Predictions:

r2 (i.e., 2πc) independent of T, P and D

When T=0, r3= σk4+ [1/(1+ (1/ KP P) + (1/ KP P KD D))] k-4

When T=∞, r3= σk4
Thus r3 (i.e., 2πb) decreases with T

When P=0, r3 =σk4;
When P=∞, r3= σk4+ k-4
Thus r3 (i.e., 2πb) increases with P

When D=0, r3 = σk4;
When D=∞, r3= σk4+ [1/(1+ (1/ KP P)) k-4
Thus r3 (i.e., 2πb) increases with D

Scheme 6: Rate-Limiting Step in a Detached State

Assuming that k34 << other rate constants,
  .       

X4   =  – k4X4 + k-4X5 (1)
                        .

k4 k2

X2X4 X5 X0 X1

P D

k-2k-4 KP KD

KT
T

k34

X3 X4
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X3   =     k2X2 – k-2X3 (2)
                        .       .       .        .

X5 + X0 + X1 + X2 = k4X4 – k-4X5 – k2X2 + k-2X3  (3)

and

KD = X0/DX1 (4)

KT = X2/TX1 (5)

KP = X5/PX0 (6)

Where Xn is the probability of each state, T=[MgATP2-], D=[MgADP1.5-], and P=[Pi].

Express X0, X1, and X5 in terms of X2, X3, or X4:

(5) X1 = X2/KTT (7)

(4+7) X0 = X1 KDD = X2 KDD/KTT (8)

(6+8) X5  = X0 KPP =  X2 KDD KPP/KTT (9)

let 1/η  ≡  1 + KDD KPP /KTT + KDD /KTT + 1/KTT (10)

ξ  ≡  KDD KPP/KTT (11)

then

dt
d
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Eigen equation:

r3 + (ηk2 + k-2 + k4  + ηξk-4 )r2 + (ηk2k4 + k-2k4 + ηξ k-2k-4)r =  0 (13)

Therefore r1         =  0 (14)

r2 + r3  =  ηk2 + k-2 + k4  + ηξ k-4 (15)

r2r3      =  ηk2k4 + k-2k4 + ηξ k-2k-4 (16)

If   ηk2 + k-2  >>  k4 + ηξ k-4

Then, r2  ≈  ηk2 + k-2 (17)
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And r3  ≈  (ηk2k4 + k2k-4 + ηξ k-2k-4)/(ηk2 + k-2)

    =  [ηk2/(ηk2 + k-2)]k4 + [(k2+ ηξ k-2)/(ηk2 + k-2)]k-4 (18)

Again, 1/η  ≡  1 + KDD KPP /KTT + KDD /KTT + 1/KTT (10)

and ξ  ≡  KDD KPP/KTT (11)

Predictions:

When T=0, r2 = k-2;
When T=∞, r2 = k2 + k-2
Thus r2 (i.e., 2πc) increases with T

When P=0, r2= k2 [1/ (1 + KDD /KTT + 1/KTT )] + k-2
When P=∞, r2= k-2;
Thus r2 (i.e., 2πc) decreases with P

When D=0, r2= k2 [1/ (1 + 1/KTT )] + k-2
When D=∞, r2= k-2
Thus r2 (i.e., 2πc) decreases with D

When T=0, r3 = (k2 /k-2 )k4  + [k2+ k-2 /(1+1/KPP +1/ KDD KPP )]/(k2 + k-2)] k-4
When T=∞, r3 = (k2 /k-2 )k4  + k2/(k2 + k-2)k-4
Thus r3 (i.e., 2πb) decreases with T

When P=0, r3= k-2 /(k2 + k-2 [1 + KDD /KTT + 1/KTT] ] k4  + (k2 + k-2)/ k-2)] k-4
When P=∞, r3 = (k-2 /k2) k4  + [(k2 + k-2)/ k-2 ] k-4
Thus r3 (i.e., 2πb) decreases with P

When D=0, r3= [k-2 /(k2 + k-2 [1 + 1/KTT]] k4  + [k2/(k2 /(1+1/KTT ) + k-2)] k-4
When D=∞, r3= [k2 /k-2+ 1/(1 + 1/KPP)] k-4
Thus r3 (i.e., 2πb) decreases with D

Scheme 7: Rate-Limiting Step Before Phosphate Release

                  
                     P    D           T                               
                                       KT          k2  k4            k5
X6             X0       X1        X2       X34                        X5            X6

KP          KD                                                  k- 2                        k-4

Assuming that k5 << other rate constants,
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  .        .         .         . 
X6  + X0 + X1 + X2  =  – k2X2 + k-2X34 (1)

                       .
X34           =  k2X2 – (k-2 + k4)X34 + k-4X5 (2)

                        .
X5     =  k4X34 – k-4X5                  (3)

           and

KP=X6/PX0 (4)

KD=X0/DX1 (5)
KT=X2/TX1 (6)

Where Xn is the probability of each state, T=[MgATP2-], D=[MgADP1.5-], and P=[Pi].

Express X0, X1, and X6 in terms of X2, X34, and X5:

(6) X1 = X2/KTT (7)

(5+7) X0 = (KDD/KTT) X2 (8)

(4+8) X6 = (KDD/KTT) KPP X2 (9)

let η  ≡  1 / (KPP KDD/ KTT + KDD/ KTT + 1/KTT +1) (10)

dt
d

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

5

34

2

X
X
X

 = –   
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

5

34

2

X
X
X

(11)

Eigen equation:

r3 – (ηk2 + k-2 + k4 + k-4) r2 + (ηk2k4 + ηk2k-4 + k-2k-4)r  =  0 (12)

Therefore r1         =  0 (13)

r2 + r3  =  ηk2 + k-2 + k4 + k-4 (14)

r2r3      =  ηk2k4 + ηk2k-4 + k-2k-4 (15)

If   ηk2 + k-2  >>  k4 + k-4

Then, r2  ≈  ηk2 + k-2 (16)
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And r3  ≈  (ηk2k4 + ηk2k-4 + k-2k-4)/(ηk2 + k-2)

    =  σk4 + k-4 (17)

where σ  ≡ k2 / (k2+ k-2/η) (18)

and, again, η  ≡  1 / (KPP KDD/ KTT + KDD/ KTT + 1/KTT +1) (10)

Predictions:

When T=0, r2 = k-2;
When T=∞, r2 = k2 +k-2
Thus r2 (i.e., 2πc) increases with T

When P =0, r2= k2 [1/(1+ (1/KT T)+ KDD/ KTT)] + k-2;
When P =∞, r2=k-2
Thus r2 (i.e., 2πc) decreases with P

When D =0, r2= k2 [1/(1+ (1/KT T)] + k-2;
When D =∞, r2=k-2
Thus r2 (i.e., 2πc) decreases with D

When T=0, r3 = k-4
When T=∞, r3= k4/(1+k-2/k2) + k-4
Thus r3 (i.e., 2πb) increases with T

When P =0, r3= [k2 /[(k2+ k-2 (1+ (1/KT T) + (KDD/ KTT)]] k4+ k-4
When P =∞, r3=k-4
Thus r3 (i.e., 2πb) decreases with P

When D =0, r3= [k2 /[(k2+ k-2 (1+ 1/KT T)]] k4+ k-4;
When D =∞, r3=k-4
Thus r3 (i.e., 2πb) decreases with D

Scheme 8: Rate-Limiting Step MgADP Release

Assuming that kD << other rate constants,
  .       . 

k4k2

X2 X34 X5 X6

DP

k-2 k-4
kDKP

X1

KT
T

X1
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X1 + X2   =  – k2X2 + k-2X34 (1)
                        .

X34    =     k2X2 – (k-2 + k4)X34 + k-4X5 (2)
                        .       .        .

X5 + X6 =     k4X34 – k-4X5 (3)

           and

KT = X2/TX1 (4)

KP = X5/ PX6 (5)

Where Xn is the probability of each state, T=[MgATP2-], D=[MgADP1.5-], and P=[Pi].

Express X1 and X6 in terms of X2, X34, and X5:

(4)  X1 = X2/KTT (6)

(5)  X6 = X5/KPP (7)

let ξ  ≡  KTT/(KTT +1) (8)

and η  ≡   KPP/(KPP +1) (9)

then

dt
d

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

5

34

2

X
X
X

 = –   
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

5

34

2

X
X
X

(10)

Eigen equation:

r3 – (k4 + ηk-4 + ξk2  + k-2)r2 + (ξk2ηk-4 + k-2ηk-4 + ξk2k4)r  =  0 (11)

Therefore r1         =  0 (12)

r2 + r3  =  ξk2  + k-2 + k4 + ηk-4 (13)

r2r3       =  ξk2ηk-4 + k-2ηk-4 + ξk2k4 (14)

If   ξk2  + k-2  >>  k4 + ηk-4, as appears to be the case (text Fig. 3),

then, r2  ≈  ξk2  + k-2  (15)

and r3  ≈  (ξk2ηk-4 + k-2ηk-4 + ξk2k4)/(ξk2  + k-2) 
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    =  σk4 + ηk-4 (16)

where σ  ≡  ξk2 /(ξk2 + k-2) (17)

and, again, ξ  ≡  KTT/(KTT +1) (8)

and η  ≡   KPP/(KPP +1) (9)

Predictions:

When T=0, r2 = k-2
When T=∞, r2 = k2 +k-2
Thus r2 (i.e., 2πc) increases with T

r2 (i.e., 2πc) independent of P and D

When T=0, r3 = ηk-4;
When T=∞, r3= [1/(1+ k2 /k-2)] k4 + ηk-4
Thus r3 (i.e., 2πb) increases with T

When P=0, r3=  σk4   
When P=∞, r3=  σk4 + k-4
Thus r3 (i.e., 2πb) increases with P

r3 (i.e., 2πb) independent of D

Derivation of Cross-Bridge Rate Constants

The kinetic constants of each cross-bridge scheme were derived by fitting algebraic expressions

12 and 13 of Scheme 1 to the [MgATP] sinusoidal rate constant plots (Fig. 7) following the

method of Kawai et al.(8). Because the apparent rate constants are more accurately expressed as

a sum, r2 + r3 (2πb + 2πc), and product, r2r3 (2πb × 2πc), in the steady-state solution of each

cross-bridge scheme, we plotted both sum and product (rather than separately plotting 2πb and

2πc) as functions of [MgATP]. Plots of sum and product as functions of [MgADP] and [Pi] (not

shown) were not used to calculate the kinetic constants of Scheme 1 because of the irreversible

effects of [MgADP] and the insensitivity of the apparent rate constants to [Pi].
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Estimate of MgADP Release Rate in Fibers

We estimated the IFI MgADP release rate in IFM by comparing rates measured in fibers

with those previously measured using isolated IFI S-1 in solution. In solution, the 2nd order

MgATP-induced detachment rate constant for IFI myosin is 750 mM-1s-1 (22oC) (10). In fibers

(15 oC), the corresponding rate constant (KATPk2) is 703 mM-1s-1 (Table 1, main text). Given a

Q10 estimate of 2, at 22oC KATPk2 should be 1195 mM-1s-1, which is ~1.6-fold greater than the

rate measured using S-1 at 22oC. This higher 2nd order detachment rate in fibers is likely due to

stress or strain myosin experiences in fibers, but does not experience in solution measurements.

If MgADP release is also elevated by a similar factor due to stress or strain, as many studies

suggest MgADP release is strain dependent (11), and given the solution determined S-1 ADP

release (10) rate of 4,090 s-1, we estimate that the MgADP release rate in fibers may be as high

as 6,540 s-1 (= 1.6 × 4,090 s-1) at 22oC. This estimated value for fiber MgADP release rate is

highly unlikely to be limiting during flight. This view accords with that of Silva et al (12) who

conclude that MgADP release must be > 4,000 s-1 at 22oC to not limit filament sliding speed

during flight.
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