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Altbough the cardiovascular benefits of the bor-
mone estrogen are at least, in part, mediated by
its antiproliferative effect on vascular smooth
muscle, its action on the migration of these cells
is unknown. To explore this relationsbip, female
rat aortic smooth muscle cells were grown in
bormone-free medium, and the effect of various
concentrations of B-estradiol on directed cellular
migration was measured in vitro using a micro-
well Boyden chamber apparatus. Migration of
smooth muscle cells to the known chemoattrac-
tants platelet-derived growth factor, insulin-like
growth factor-1, and fibronectin (all at peak
doses for migratory activity) was attenuated by
PB-estradiol (0.5 to 10 ng/ml) in a concentration-
dependent manner relative to control cells
treated with vebicle (0.01% etbanol). This re-
sponse was insensitive to pretreatment with in-
dometbacin and was stereospecific (17 o-estra-
diol lacked response). Like p-estradiol, tbe
synthetic estrogen diethylstilbestrol attenuated
directed smootb muscle cell migration whereas
the male bormone testosterone was ineffective.
Additional studies showed that [-estradiol-medi-
ated suppression of migration was inbibited by
the anti-estrogen ICI 164,384 and the gene tran-
scription inbibitor actinomycin D. These are the
Sirst results demonstrating a reduction in di-
rected smootb muscle cell migration by p-estra-
diol. The mechanism of this estrogen-mediated
response appears to involve conventional estro-
gen receptors. (AmJ Patbol 1996, 148:969-976)

Although the clinical cardiovascular benefits of estro-
gen replacement therapy in postmenopausal women
have become apparent,’ the mechanisms whereby
estrogen affects target cells of the blood vessel wall are
poorly understood. Experimental studies suggest an
anti-atherogenic effect of estrogen independent of its
action on cardiovascular risk factors associated with
atherosclerosis.6~8 Estrogen-binding receptors have
been identified on both vascular smooth muscle cells
(SMCs)®~'2 and endothelium,’® consistent with the
possibility that vascular function, at least in part, is
under direct hormonal control.

Estrogen is thought to limit atherosclerosis and neo-
intimal formation after balloon arterial injury due to its
antiproliferative effect on vascular smooth muscle.'#1®
Intimal migration of arterial SMCs may also play an
integral role in the development of arterial lesions after
vascular injury.'®7 It is therefore conceivable that es-
trogen could decrease SMC migration as another po-
tential vasculoprotective mechanism in women. Thus,
the aim of the present study was to assess the in vitro
effects of p-estradiol on SMC migration and to deter-
mine whether these responses were attributed to
genomic or nongenomic actions of estrogen.

Materials and Methods

Reagents and Hormones

Estradiol-17B, estradiol-17a, dithethylstilbestrol, tes-
tosterone, and indomethacin were obtained from
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Sigma Chemical Co., (St. Louis, MO). The mouse
monoclonal antibody to human estrogen receptor was
purchased from Affinity Bioreagents (Neshanic Station,
NJ). Fetal bovine serum (FBS) and medium 199 (M199)
were purchased from Gibco Laboratories (Grand Is-
land, NY). Charcoal/dextran-treated FBS was ob-
tained from Hyclone (Logan, UT). Recombinant hu-
man platelet-derived growth factor (PDGF-BB) and
insulin-like growth factor (IGF-1) were purchased
from Collaborative Research (Bedford, MA). Purified
fibronectin from rat plasma was from Biomedical
Technologies (Stoughton, MA). The anti-estrogen,
N-(n-butyl)-11-[3,17B-dihydroxyestra-1,3,5(10)-trien-
7a-yl]IN-methylundecanamide (ICl 164,384) was
kindly provided by M. Y. Farhat (Department of Phys-
iology, Georgetown University, Washington, DC).
Actinomycin D was purchased from Boehringer
Mannheim (Indianapolis, IN).

Solutions of hormones were prepared fresh in ab-
solute ethanol. Indomethacin (10 mmol/L) was dis-
solved in 100 mmol/L Na,CO, and diluted in phos-
phate-buffered saline PBS. The specific estrogen
antagonist ICl 164,384 was prepared as a stock
solution in 100% ethanol and stored at —20°C.

Cell Culture

Rat aortic SMCs were prepared from adult female
Sprague-Dawley rats (Hazelton, PA) weighing 200 to
250 g by the explant method of Cole et al.'® Briefly,
aortic explants were obtained from the thoracic
aorta, the adventitial layer was dissected away with a
scalpel blade, and the endothelium was removed
with a cotton swab. The tissue explants were main-
tained in medium 199 supplemented with 10% FBS,
4 mmol/L L-glutamine, 100 U/ml penicillin G sodium,
and 100 ug/ml streptomycin sulfate in a humidified
atmosphere of 5% CO,/95% air. The medium was
replaced every third day. SMCs were allowed to
grow out from the tissue, which was subsequently
removed after 9 to 11 days. After confluency, the
cells were subcultured using 0.05% trypsin and 0.53
mmol/L EDTA. SMCs were characterized by immu-
nofluorescence using a monoclonal antibody di-
rected against a-SMC actin (Sigma).'® Negative
staining for factor VIII using a polyclonal anti-von
Willebrand factor (VWF; Atlantic Antibodies, Stillwa-
ter, MN) confirmed that the cultures were not con-
taminated with endothelium.2° Cells were routinely
subcultured at a 1:5 ratio and used between pas-
sages 4 and 6.

Smooth muscle cells were cultured in hormone/
phenol-free media for at least 48 hours before the
experiments. Because phenol functions as a weak

estrogen antagonist,®’ growth medium was pre-
pared using phenol-free M199 (Gibco) containing
10% charcoal/dextran-treated fetal bovine serum.
Serum treated in this manner lacks several biologi-
cally active molecules in addition to endogenous
estrogen.??

Cell Migration Assay

Migration of SMCs was assayed in a 48-well chemo-
taxis chamber (Neuro Probe, Cabin John, MD).
Briefly, cultured SMCs were trypsinized and sus-
pended at a concentration of 5.0 X 10° cells/ml in
phenol-free M199 with 10% charcoal/dextran-treated
FBS. In the standard assay, a 50-ul volume of SMC
suspension was placed in the upper chamber and
25 ul of M199 containing a migration factor (PDGF-
BB, IGF-1, or fibronectin) was placed in the lower
chamber. Chemoattractants were diluted in M199.
B-Estradiol (0.1 to 10 ng/ml), other test agents (hor-
mones/inhibitors), or vehicle (0.01% ethanol) were
added to both the upper and lower chambers at the
same concentrations. Assays were performed in
which the total number of cells migrating through
gelatin-coated polyvinylpyrrolidone-free polycarbon-
ate membranes (8-um pores; Nucleopore Corp.,
Pleasanton, CA) were quantified. For assay of SMC
migration, chambers were incubated at 37°C in a
humidified atmosphere of 5% CO,/95% air for 4
hours. After incubation, nonmigrating cells were
wiped off the filters. The filters were then fixed in
methanol and stained with Gill-3 hematoxylin (Shan-
don, Pittsburgh, PA). Migrated cells were counted
using image analysis software (IP Lab Spectrum,
Signal Analytics Corp., Vienna, VA). Random migra-
tion was assessed by quantifying cell migration in
response to medium alone. The data are presented
as mean * SEM of triplicate assays and represent
the total number of migrating SMCs per four high
power fields (X200 HPF).

For experiments testing the effects of the anti-
estrogen ICI 164,384 and the RNA polymerase in-
hibitor actinomycin D, cell were pretreated in sus-
pension at the indicated concentrations for 1 hour
and 30 minutes, respectively, at 37°C. SMCs were
then prepared for migration studies as described
above. For cyclooxygenase inhibitor studies, cells in
suspension were incubated with 5 umol/L indo-
methacin for 20 minutes before migration assays.

Cell Adhesion Assay

Cell adhesion was measured similarly to the meth-
ods of Shimokado et al.2® Briefly, SMCs in suspen-



sion (10° cells/well) were added to gelatin-coated
24-well plates. B-Estradiol (5 ng/ml) was added di-
rectly to the wells; control wells received 0.01% eth-
anol. After various times (30 minutes and 1, 2, and 4
hours) nonadherent cells were removed by washing
(three times) with Hanks' balanced salt solution.
Cells were trypsinized and counted with a Coulter
counter (model ZM). Experiments were performed in
triplicate.

Data Analysis

Random migration of cells determined in the ab-
sence of stimulatory agonists was minimal, ranging
from three to seven cells per HPF. The data pre-
sented were not adjusted for random migration. The
final results are reported as mean = SEM of the total
migrating SMCs. Group comparisons were made us-
ing one-way analysis of variance, and statistical dif-
ferences were determined by Scheffé’s test (Stat-
View for the Macintosh, Abacus Concepts, Berkeley,
CA). Differences with a value of P < 0.05 were con-
sidered statistically significant.

Results

Inhibitory Effects of B-Estradiol on Directed
Smooth Muscle Migration

PDGF-BB, IGF-1, and fibronectin are known che-
moattractants of vascular SMCs and their effects on
migration of SMCs in vitro are shown in Figure 1.
Maximal migration activity was observed at 10 ng/m!
for both PDGF-BB and IGF-1 (PDGF-BB response
being approximately twice that of IGF-1) whereas
maximal migration with fibronectin occurred at 10
pg/ml, an approximate 1000-fold increase in con-
centration relative to the response to either PDGF-BB
or IGF-1.

Responses to varying concentrations of B-estra-
diol were assessed in cells maximally stimulated with
either PDGF-BB, IGF-1, or fibronectin. A p-estradiol-
mediated concentration-dependent decrease in
SMC migration was observed in cells maximally stim-
ulated with all three selected polypeptides (Figure
2). Significant suppression of migration occurred at
B-estradiol concentrations of 1 ng/ml or more and
peaked at concentrations of 10 ng/ml. Migration ac-
tivity at 10 ng/ml B-estradiol in PDGF-BB-, IGF-1-,
and fibronectin-stimulated SMCs was 48, 55, and
31%, respectively, of control wells. B-Estradiol alone
in concentrations up to 10 ng/ml did not affect ran-
dom migration or cell adhesion relative to SMCs
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Figure 1. Graph showing a dose-dependent increase in rat aortic SMC
migration activity by the chemoattractant polypeptides PDGF-BB, in-
sulin-like growth factor-1, and rat plasma fibronectin. SMC migration
was examined in the micro-well Boyden chamber, as described in
Materials and Methods. SMC suspensions were placed in the upper
chamber, and M199 containing the indicated concentrations of the
chemoattractant polypeptide was placed in the lower chamber. The
incubation time for all experiments was 4 bours. Each point represents
the increase in migration activity as mean * SEM of triplicate obser-
vations for the number of cells observed per HPF (X 200) from three
separate experiments.

treated with 0.01% ethanol (data not shown). In ad-
dition, B-estradiol-mediated suppression of PDGF-
induced SMC migration was unchanged by pretreat-
ment with 5 umol/L indomethacin (number of cells
per HPF at maximal B-estradiol dose was 46 * 0.7
versus 48 = 0.8 (P = 0.3) with and without indo-
methacin, respectively).

Effect of 17a-Estradiol, Testosterone,
and Diethylstilbestrol on Smooth
Muscle Migration

To determine the stereoselectivity and specificity of
the B-estradiol-mediated response, the effects of
17a-estradiol, the nonsteroidal estrogen diethylstil-
bestrol, and the androgen testosterone on smooth
muscle migration was examined. Unlike B-estradiol,
the enantiomer 17a-estradiol at similar concentra-
tions had no effect on cell migration toward PDGF-
BB, indicating that the response to estradiol was
stereospecific (Figure 3). As with B-estradiol, the
synthetic estrogen diethystilbestrol equally sup-
pressed smooth muscle migration whereas testos-
terone was ineffective (Figure 3).
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Neutralization of Estrogen-Induced
Suppression of Smooth Muscle Migration
by the Anti-Estrogen ICI 164,384 or the
Gene Transcription Blocker Actinomycin D

To determine whether the response to B-estradiol is
receptor mediated, cells were treated with the anti-
estrogen ICI 164,384, an agent that decreases es-
trogen receptor expression®* (Figure 4A). Cells pre-
treated with 1.0 umol/L ICI 164,384 for 1 hour at 37°C
before the migration assay did not alter migration
responses toward PDGF-BB and resulted in a com-
plete reversal of the inhibitory effect of estrogen.

The importance of gene transcription in mediating
suppression of smooth muscle migration was also
assessed. Before the migration assay, SMCs were
pretreated (30 minutes) with actinomycin D (10 ug/
ml) to inhibit RNA polymerase and gene transcrip-
tion. Pretreatment with actinomycin D had no effect
on smooth muscle migration toward PDGF-BB; how-
ever, it completely prevented the suppression of mi-
gration induced by B-estradiol (Figure 4B).

B. *p <0.05; **p < 0.001 vs. IGF-1 alone
50 T
c
kel
® 1 T
g, 40 T :Il_c
=
= *%
& 307 T
2% * %
2% - %%k
gg 20 x
£
8 10 7
£
(4]
IGF-1
1ongm (01 05 15 10

Estradiol-173 (ng/ml)

Figure 2. Graphs showing B-estradiol-induced suppression of SMC migra-
tion induced by maximal concentrations of PDGF-BB (10 ng/mi; A), IGF-1
(10 ng/ml; B), and fibronectin (10 pg/mi; C). Cell migration was exam-
ined in the micro-well Boyden. Cell suspensions were placed in the upper
chamber, and M199 containing the indicated concentrations of the che-
moattractant polypeptide was placed in the lower chamber. Various con-
centrations of B-estradiol (0.1 to 10 ng/ml) were added to both the upper
and lower compartments of the chamber. Control cells (polypeptides alone)
were treated with 0.01% ethanol. The incubation time for all experiments
was 4 bours. Each bar represents the mean * SEM of cells per HPF (X 200)
from three to four separate experiments.

Discussion

The present series of experiments demonstrates that
B-estradiol, at the upper range of physiological con-
centrations, inhibits in vitro directed migration of vas-
cular SMCs. Suppression of cell migration by B-es-
tradiol was observed between 0.5 and 10 ng/ml
hormone and was independent of the applied che-
motactic stimuli. The response to B-estradiol was
insensitive to indomethacin and stereospecific as the
enantiomer a-estradiol showed no activity. The inhib-
itory effects of B-estradiol were reproduced by the
synthetic estrogen diethylstilbestrol whereas the
androgen testosterone had no significant effect.
Reduced migration by B-estradiol appears to be
mediated by conventional (gene-activating nu-
clear) estrogen-estrogen receptor complexes as
both the anti-estrogen ICl 164,384 and the gene
transcription inhibitor actinomycin D blocked its ac-
tivity. These data suggest that suppression of di-
rected SMC migration by B-estradiol involves estro-
gen receptors and gene transcription, providing
evidence of a novel genomic action of estrogen.
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Figure 3. Graph showing the dose-dependent effects of the synthetic
estrogen diethyistilbestrol, 17a-estradiol, and testosterone on SMC mi-
gration toward PDGF-BB. Results are expressed as the mean * SEM of
cells per HPF (X200) from four separate experiments. Increasing
concentrations of 17a-estradiol and the male hormone testosterone did
not effect cell migration induced by PDGF-BB, whereas the effects of
17B-estradiol were mimicked by the synthetic nonsteroidal estrogen
diethylstilbestrol.

Previous experimental studies suggest a protec-
tive action of estrogen on atherosclerosis and reste-
nosis independent of its effects on risk factors for
coronary heart disease. Therefore, the effects of es-
trogen are most likely mediated through a direct
activation of cells of the arterial wall.2>2® The pres-
ence of estrogen receptors in vascular SMCs sug-
gest that SMCs are indeed estrogen sensitive.®~'2
However, little is known of the functional significance
of the expression of estrogen receptors on vascular
cells. Thus far, experimental studies have focused
only on the effect of estrogen on SMC growth 42829
and not on cell migration, which has been shown in
the rat carotid balloon injury model to involve as
many as 50% of cells within the intima.?”

In vivo studies demonstrating an estrogen-induced
reduction in neointimal formation in animal models of
atherosclerosis and restenosis after balloon arterial
injury are well described in the literature.6=8'5 How-
ever, only one study has examined the effects of
estrogen on SMC function.' In a rabbit model of
balloon arterial injury, chronic estrogen therapy (22
to 24 days) reduced intimal hyperplasia by 50 to
70%. Total [*H]thymidine incorporation and DNA
content were also significantly decreased in balloon-
injured arteries of estrogen-treated animals. Mea-
surement of cell proliferation, however, was per-
formed at 3 days after vascular injury, a time point at
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which neointimal proliferation is minimal.®° It is there-
fore difficult to conclude from these data whether
suppression of neointimal formation with estrogen
treatment results from decreased SMC proliferation,
migration, or both.

A number of polypeptides (PDGF-BB being the
most potent) stimulate directed migration of vascular
smooth muscle in vitro.®'=34 In in vivo animal studies,
infusion of PDGF-BB after arterial balloon injury ac-
celerates intimal lesion formation with little effect on
SMC proliferation.®5-3” These investigations indicate
that PDGF may promote directional migration of me-
dial SMCs into the intima after vascular injury.

Chemotactic responses in the presence of estro-
gen have been previously studied in both polymor-
phonuclear leukocytes and endothelial cells.383°
Unlike its effects on SMC migration, p-estradiol alone
was shown to promote chemotaxis in bovine poly-
morphonuclear leukocytes. In human umbilical vein
endothelial cells, B-estradiol stimulated angiogenic
activity and enhanced migration toward endothelial
cell growth supplement.®® Similar to our findings, the
estrogenic effects in vascular endothelium appear to
involve activation of estrogen receptors such that
responses were inhibited by the specific estrogen
receptor antagonist ICI 182,780.

In the present study, the concentrations of es-
trogen routinely tested ranged from 0.1 to 10 ng/ml
(3.6 X 107 "° t0 3.6 X 1078 mol/L). Estrogen con-
centrations >10 ng/ml had no additional effect on
PDGF-induced migration (data not shown). In pre-
menopausal nonpregnant women, estrogen con-
centrations are in the range of 0.03 to 0.4 ng/ml.4°
The inhibition of estrogen in our study was appar-
ent at concentrations of 0.5 ng/ml (1.8 nmol/L) or
greater, which is at the upper end of the physio-
logical range. Maximal suppression of migration
induced by B-estradiol was approximately 30 to
50% depending on the migratory stimuli. The ef-
fects of estrogen were studied only in SMCs max-
imally stimulated for migration. Perhaps using sub-
maximal concentrations of migratory stimuli would
have resulted in greater effects of estrogen at
lower, more physiological concentrations.

Estrogen has been shown to increase prostag-
landin synthesis in arterial SMCs.*' Furthermore,
prostaglandins E, and F,,, at nanomolar concentra-
tions, have been shown to inhibit both PDGF- and
interleukin-8-induced smooth muscle migration.®* In
view of this inhibitory effect, we speculated that es-
trogen may decrease PDGF-induced migration sec-
ondarily by release of endogenous prostaglandins.
Such a response was not apparent in our culture
system because pretreatment of cells with the cy-
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Figure 4. Graphs showing the effects of the anti-estrogen 1CT 164,384 (A) and the RNA synthesis inhibitor actinomycin D (B on B-estradiol-mediated
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cvidence of a genomic effect of estrogen.

clooxygenase inhibitor indomethacin did not inhibit
the suppression of migration mediated by B-estra-
diol.

The precise mechanism of B-estradiol interference
with SMC migration is unknown. In nonvascular
smooth muscle such as the uterus, polypeptide
growth factors and steroid hormones act synergisti-
cally through shared membrane receptors and/or
other transcription factors to elicit cell growth and
differentiation.”® The mechanism by which the ac-
tions of growth factors and estrogen converge does
not appear to apply to vascular SMCs, in which
estrogen interferes with growth factor signaling path-
ways known to cause migration.

The regulation of SMC migration by B-estradiol
appears to be mediated by the estrogen receptor,
which functions as a transcription factor. The pres-
ence of estrogen receptors in rat aortic smooth mus-
cle has been demonstrated by radioligand binding
assays,? reverse transcriptase polymerase chain re-
action,'’® and immunocytochemistry.’® Transcrip-
tional activation of the estrogen receptor has been
shown to enhance c-fos mRNA transcription in
SMCs, further suggesting that effects of estrogen are
receptor mediated.'® Additional support for this hy-
pothesis is provided by the present study, in which
the specific estrogen receptor antagonist IClI
164,384 blocked estrogenic suppression of PDGF-

induced migration in vitro. The anti-estrogen ICI
164,384 is a purer antagonist, unlike tamoxifen, the
more conventional estrogen receptor blocker that
possesses partial agonistic effects.*® Treatment with
ICl 164,384 is thought to cause a rapid depletion of
estrogen receptors from estrogen-responsive target
tissue.** This decrease in estrogen receptor expres-
sion by ICl 164,384 results from an increase in es-
trogen receptor protein turnover®® and a disruption
of nucleoplasmic shuttling of the estrogen recep-
tor.*® Therefore, treatment with ICl 164,384 results in
an inadequate amount of estrogen receptors to bind
to the native ligand and elicit agonist responses.
Estradiol-induced suppression of SMC migration
toward PDGF was also preventable by actinomycin
D, an inhibitor of DNA-dependent RNA polymerase,
further implicating receptor activation and gene tran-
scription as a mechanism for this estrogenic re-
sponse. Contrary to previous studies of fibroblasts
and bovine SMCs, in our investigations actinomycin
D did not inhibit PDGF-induced migration.®"® In
other cell systems, actinomycin D has been shown to
inhibit neutrophil chemotaxis toward formyl-methio-
nyl-leucyl-phenylalanine,*” whereas others have
shown no effect on neutrophil migration with this
agent.*®4? Interestingly, in our studies, cell migration
toward PDGF was inhibited only by cycloheximide
(unpublished observation), which is in agreement



with the aforementioned studies of fibroblasts and
smooth muscle cells, further confirming a require-
ment for continuous protein synthesis for cell migra-
tion. Such a mechanism seems reasonable in that
the regulation of actin filament disassembly and as-
sembly is critical for cell translocation, and actino-
mycin D does not appear to interfere with this mech-
anism.

The discrepancy of the relation of the effects of
actinomycin D in our study and previous studies is
unknown. Whether the cell type, phase of the cell
cycle passage in culture, or species differences play
a role in the response to actinomycin D is unclear.
Recent studies have identified potential signal trans-
duction pathways associated with PDGF-induced
migration of arterial SMCs.%®" These investigations
provide evidence of a localized time-dependent
change in actin filament assembly and disassembly
regulated by levels of phosphatidylinositol bisphos-
phate and calcium and activation of protein kinase A.
Unlike the mitogenic response induced by PDGF,
which requires DNA replication and transcription, the
mechanisms associated with PDGF-induced migra-
tion of arterial SMCs appear to be fully activated by
second messenger pathways independent of nu-
clear signaling. Whether estrogen interferes with
PDGF-induced smooth muscle migration directly or
through signal transduction pathways linked to gene
activation is yet to be determined.
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