
SD2: Statistical analysis.

1 Statistical model.

Let B be a nucleotide at a given RefSeq gene position.

It is assumed in this model that a variability exists in both the cancer and
normal groups. Our aim was to determine if the variability related to B was
the same in both the cancer and normal groups. The numbers p1B and p2B

were also compared, where p1B and p2B are the probabilities of a cancer or
normal case, respectively, of having the B base on an EST.

This led to the two-sided proportion test, with the following hypotheses :{
H0 : p1B = p2B

H1 : p1B 6= p2B.
(1)

This test is equivalent to {
H0 : p1B̄ = p2B̄

H1 : p1B̄ 6= p2B̄
(2)

where p1B̄ and p2B̄ denote the probability of having a different base than
that of the RefSeq in the cancer or normal case, respectively. For example, if
B = T , then B̄ = {A, C,G}. p1B̄ and p2B̄ measure the variabilities in cancer
and normal group, respectively.

Moreover,

pjT̄ = pjA + pjC + pjG, j = 1, 2. (3)

Note that test (2) cannot be performed since the bases are subject
to sequencing/reading errors of the cDNA sequence.

At a given position, it is currently assumed that a sequencing error occurs at
a rate of 1 to 5%. This means that the mean number of erroneous readings is
1 to 5 per 100 bases, these bases being replaced by another one on the EST.
Therefore variability can’t be measured directly. Sequencing errors have also
to be introduced in the model.

Let ε be the sequencing error probability at a given position, i.e the proba-
bility of reading a base that is different from the real one.

It is assumed that:

1



1. (E1) The sequencing error probability ε does not depend on the cDNA
deriving from a normal or cancer case,

2. (E2) The sequencing error probability ε does not depend on the real
base B,

3. (E3) The probability of reading a given base that is different from the
real one is ε

3
.

Let q1B and q2B be the probabilities of the RefSeq base B ∈ {A, T, C,G} to
be correctly read for a cancer case and a normal case, respectively.

Let us determine qjT , j = 1, 2:

qjT = P (“ the read base is T ”)
= P (“the real base is T and there is no sequencing error ”)
+ P (“the real base is A and there is a sequencing error

from A to T ”)
+ P (“the real base is C and there is a sequencing error

from C to T ”)
+ P (“the real base is G and there is a sequencing error

from G to T ”)

So under (E1), (E2) and (E3):

qjT = pjT (1− ε) + pjA
ε
3

+ pjC
ε
3

+ pjG
ε
3

= pjT (1− ε) + ε
3
(1− pjT )

= pjT (1− 4 ε
3
) + ε

3
.

In general, for any base B:

qjB = pjB(1− 4
ε

3
) +

ε

3
. (4)

The two-sided test (1) can also be rewritten as:{
H0 : q1B = q2B

H1 : q1B 6= q2B
(5)

or {
H0 : q1B̄ = q2B̄

H1 : q1B̄ 6= q2B̄
(6)
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The value of sequencing error probability ε is not needed to perform this test.

Two-sided proportion test.

At a non SNP given position of a gene RefSeq, n1 cancer ESTs and n2 normal
ESTs are observed. The following contingency table is considered:

B B Sum

Cancer n1 − k1 k1 n1

Normal n2 − k2 k2 n2

Sum m1 m2 n

k1 and k2 are computed by counting the number of nucleotides which are
different from that of the RefSeq among the number of cancer and normal
aligned ESTs, respectively. The proportions k1

n1
and k2

n2
refer to the observed

percentage of deviations in the cancer and normal tissues.

Let Kj be the random variable which assigns to each case the number of non
B nucleotides in the cancer group (j = 1) or in the normal group (j = 2).

Then kj is a realization of the random variable Kj.

P̂ is denoted as

P̂ =
K1 + K2

n1 + n2

, (7)

whose

p̂ =
k1 + k2

n1 + n2

(8)

is a realization.

We introduce T as:

T =
K1

n1
− K2

n2√
P̂ (1− P̂ )

(
1
n1

+ 1
n2

) , (9)

whose

t =
k1

n1
− k2

n2√
p̂(1− p̂)

(
1
n1

+ 1
n2

) , (10)
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is a realization.

Under the constraints

n > 70,
nimj

n
> 5, i = 1, 2, j = 1, 2, (11)

and when the null-hypothesis H0 holds

T ≈ N(0, 1). (12)

Finally, let u(α) be the real number as

α = P (G > u(α)),

where G ∼ N(0, 1).

So test (6) is done for each position where (11) holds, and the
decision rule is then:

Decision rule :

If

|t| > u(
α

2
), (13)

the null hypothesis H0 is rejected at the confidence level α; otherwise the
null hypothesis H0 is not rejected.

This test allowed us to determine if at a given position, the vari-
abilities in the cancer group and in the normal group are the same
or not.

One-sided proportion tests.

As the hypothesis q1B̄ 6= q2B̄ is equivalent to q1B̄ > q2B̄ or q1B̄ < q2B̄, the two
following one-sided proportion tests are considered:

1. The first one-sided test {
H0 : q1B̄ ≤ q2B̄

H1 : q1B̄ > q2B̄
(14)

which is equivalent to the test
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{
H0 : p1B̄ ≤ p2B̄

H1 : p1B̄ > p2B̄,
(15)

has the same decision rule than the test{
H0 : q1B̄ = q2B̄

H1 : q1B̄ > q2B̄.
(16)

Decision rule :

If

t > u(α), (17)

the null hypothesis H0 is rejected at the confidence level α; otherwise
the null hypothesis H0 is not rejected.

Thus this test allows first to conclude that variabilities are
different in both groups when positive, then it measures in this
case whether variability is statistically greater in the cancer
set.

2. The second one-sided test{
H0 : q1B̄ ≥ q2B̄

H1 : q1B̄ < q2B̄
(18)

which is equivalent to the test{
H0 : p1B̄ ≥ p2B̄

H1 : p1B̄ < p2B̄,
(19)

has the same decision rule than the test{
H0 : q1B̄ = q2B̄

H1 : q1B̄ < q2B̄.
(20)

Decision rule :

If
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t < −u(α), (21)

the null hypothesis H0 is rejected at the confidence level α; otherwise
the null hypothesis H0 is not rejected.

Unlike test (14), test (18) verifies the hypothesis that vari-
ability is significantly higher in the normal set.

NB: If α = 5%, then u(α
2
) = u(0.025) = 1.96; if α = 10%, then u(α

2
) =

u(0.05) = 1.645

p−values.

Introduce the p−value notion for tests (6), (14) and (18) .

Let T be the test statistic defined by (9), whose observed realization is t.

1. The probability

p = P (|T | > t | H0). (22)

is called p-value of test (6).

The decision rule of test (6) can also be written as:

Decision rule:

If p < α, the null hypothesis H0 is rejected at the confidence level α;
otherwise the null hypothesis H0 is not rejected.

2. The probability

p = P (T > t | H0). (23)

is called p-value of test (16), and the decision rule of test (16) can be
rewritten as:

Decision rule:

If p < α, the null hypothesis H0 is rejected at the confidence level α;
otherwise the null hypothesis H0 is not rejected.
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3. The probability

p = P (T < t | H0). (24)

is called p-value of test (20), and the decision rule of test (20) can be
rewritten as:

Decision rule:

If p < α, the null hypothesis H0 is rejected at the confidence level α;
otherwise the null hypothesis H0 is not rejected.

2 Location Based Estimator: a false positives

mean number overestimator.

Definitions : A statistical test is said to be

• positive if H0 is rejected,

• false positive if H0 is rejected whereas H0 is true,

• true positive if H0 is rejected whereas H0 is false,

• negative if H0 is not rejected,

• true negative if H0 is not rejected whereas H0 is true,

• false negative if H0 is not rejected whereas H0 is false.

For each gene, a statistic test is made at level α for m positions; this way m
p-values

{
pk

}
1≤k≤m

are computed. These p-values are realizations of random

variables
{
P k

}
1≤k≤m

.

The following random variables are defined as:

1. V (α), the number of false positives at level α,

2. S(α), the number of true positives at level α,

3. R(α) = V (α) + S(α), the number of positives,

4. U(α), the number of true negatives at level α,

7



5. T (α), the number of false negatives at level α,

6. W (α) = U(α) + T (α), the number of negatives.

The following contingency table is considered:

H0 accepted H0 rejected Sum

H0 true U(α) V (α) m0

H1 true T (α) S(α) m1

Sum W (α) R(α) m

Note that m0 and m1 are unknown constants. On the contrary, W (α) and
R(α) are observed variables.

As

V (α) ∼ B(m0, α), (25)

we have :

E[V (α)] = m0α. (26)

An upper-bound of m0 is given by 2E
[∑m

k=1 P k
]
. Indeed :

E

[
m∑

k=1

P k

]
= E

[ ∑
k : H0 true

P k

]
+ E

[ ∑
k : H0 false

P k

]
︸ ︷︷ ︸

≥0

. (27)

Whenever H0 is true, P k ∼ U[0,1], 1 ≤ k ≤ m.

So we have

E[P k] =
1

2
. (28)

Since there are m0 tests for which H0 is true, according to (27), we have:

E

[
m∑

k=1

P k

]
≥ 1

2
m0. (29)

With (26) and (29), we obtain:
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E[V (α)] = m0α ≤ E

[
2α

m∑
k=1

P k

]
. (30)

2α
∑m

k=1 P k is said to be an overestimator of m0α, called Location Based
Estimator (LBE) [1].
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