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Supporting Appendix

Preparing the Data
The data used in this study was obtained from a mobile phone operator, from now on referred
to as the “operator”. We focus exclusively on voice calls, filtering out all other services, such
as voice mail, data calls, text messages, chat, and operator calls. For the purpose of retaining
customer anonymity, each subscription is identified by a surrogate key such that it is not
possible to recover the actual phone numbers from it. Since there is no other information
available for identifying or locating customers, this guarantees that their privacy is respected.
We have filtered out calls that involve other operators, incoming or outgoing, keeping only
those transactions in which the calling and receiving subscription is governed by the operator.
This filtering is needed to eliminate the bias between the operator and other mobile service
providers as we have a full access to the customers of the operator, but only partial access to
the activity of other providers.

A small fraction of the subscriptions appears to be used for business or business-like
purposes, which appear as users with a very large number of calls never returned. To ensure
that we are dealing with genuine social interactions, we require links to represent reciprocal
calls within the investigated time period, so that A needs to call B and vice versa for a link to
be placed between them. This restriction eliminates telemarketing-type calls and wrong
numbers. It is possible that this induces some false negatives, i.e. some links corresponding to
genuine social interaction may go undetected. However, since the monitored time window is
relatively long, over one third of a year, there is plenty of time to reciprocate the calls,
limiting the number of false negatives.

Two quantities could be used as tie strengths: the total number and the total duration of
calls placed within the period. As expected, these two variables are statistically dependent,
giving rise to Pearson’s linear correlation coefficient of 0.70. We have chosen to use call
durations as weights (or tie strengths) wij, since they implicate the temporal and financial
commitment (billing is based on call duration) to the relationship. In addition, since call
durations are measured in seconds, they can be considered a continuous weight variable,
whereas the number of calls suffers from strong discretization.

Given the way we have constructed the network, an interaction, or link, corresponds to a
social association between two individuals and it is by nature bi-directional. It would be
possible to retain directions in the network using directed links and thus have asymmetric
weights, i.e. wij≠wji, which would carry information about the distribution of calls between
any two connected individuals. Yet, given that there is no a priori reason to assume that the
individual responsible for initiating the call should interact more strongly (after all, both can
interact for exactly the same call duration), we have neglected the directed nature of the links.

We allowed for the possibility that there are some very short calls which, when mapped to
links, could affect the overall topology of the network. To see this, we filtered out links with
total call duration less than 10 seconds per link over the examined period of 18 weeks. After
this we filtered out nodes with strengths less than 60 seconds per node over the period, such
that if a node is filtered out, the links connected to it are also removed. These extremely short
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calls do not in general represent true phone numbers, but rather mobile phone and service
updates. Indeed, a common way of obtaining a new handset is by signing up for a new
service, and after its activation the users switch back to the old number. We call a network
without the reciprocity requirement a non-mutual network, i.e. a one-directional call between
A and B is sufficient for them to be linked together. In contrast, a network in which the calls
are required to be reciprocal is called a mutual network. The results of these filterings are
shown in Table 1. It turns out that imposing the reciprocity condition does eliminate some of
the outliers, which can be best seen in the degree distribution plots (Fig. 5). However, filtering
seems to have little effect on any of the studied distributions. Consequently, in this study we
used a mutual network constructed from unfiltered data.

Fig. 6. Link weight distributions for mutual and non-mutual networks under different filterings. Note
that the top left plot is the same as in the previous figure.

Weak ties conjecture
A direct conjecture of the weak ties hypothesis is that communities are locally connected by
single weak ties (1). Granovetter justifies this conjecture by framing the hypothesis more
precisely in order to derive its implications for larger networks: “The triad which is most
unlikely to occur, under the hypothesis stated above, is that in which A and B are strongly
linked, A has a strong tie to some friend C, but the tie between C and B is absent.” Assuming
that this structure never happens, he arrives at the conjecture.

We can obtain the conjecture also using slightly different reasoning. Assume that there is a
single tie A-B, known as a local bridge, connecting two communities and assume that it is
strong. Based on the weak ties hypothesis, we expect the neighborhoods of A and B (which
we assume exist) to overlap. But this means that there is another local bridge, a path of length
2, connecting the nodes and, thus, the two communities. This contradicts our assumption
about there being just one strong local bridge and, therefore, the bridge must be a weak tie.



3

Sampling
The mobile phone call records, from which the network is constructed, were obtained from a
major mobile operator with a market share of approximately 20% in the target country.
Although the dataset covers some seven million users, it is nervertheless a sample of the
underlying phone call network that consists of all mobile users in the country. In this section
we investigate the possible bias of having a finite sample of the underlying network on the
result shown in Fig. 1D, i.e., the increase of overlap wO〉〈  as a function of (cumulative) tie
strength. We use the term sample MCG to denote the network studied in this paper and population
MCG to denote the entire mobile phone communication network.

Let 20.0=p denote the 20% market share of the operator in the target country. We
assume that the nodes are all identical and that the probability of a node being governed by
the operator is independent of the probability of its neighbour being governed by the operator.
Given these assumptions, we can interpret p as the probability of a randomly chosen node
being governed by the operator and, consequently, its being included in the sample. If we use
N  to denote the number of nodes in the sample MCG, the expected number of nodes in the
population MCG is given by NpNN 5/ˆ == . Similarly, given the above assumptions, the
probability for a link in the population MCG to be included in the sample MCG is 2p ,
whereas the probability for a triangle in the population MCG to be included in the sample
MCG is 3p . Based on the observed sample, the expected number of links and triangles in the
population MCG are, therefore, LpLL 25/ˆ 2 ==  and TpTT 125/ˆ 3 == , respectively,
meaning that we would expect the population MCG to contain 25 times the number of links
and 125 times the number of triangles present in the sample MCG.

Since the value of p affects the number of observed nodes, links, and triangles in the
sample, it is important to consider how it may affect overlap, defined in the text as

[ ],2/ −−+= ijjiijij nkknO  where nij is the number of common neighbors of vi and vj, i.e., the
number of triangles around the link (vi,vj), and ki (kj) denotes the degree of node vi (vj). Of
particular importance is the behavior of overlap averaged over links of a given weight as
shown in Fig. 1D, denoted with w

D OwO 〉〈≡〉〈 , where the superscript in Dw  emphasizes that we

are using aggregated call durations as link weights. To estimate the effect of p on 〉〈 DwO , we

generate a resample by including each node in the LCC (largest connected component) of the
sample MCG with a probability p. In this sampling scheme, varying probability p results in
different sample sizes, and in the limit of setting 1=p  we recover the sample MCG. We
consider only the LCC of the resulting resample, since for 1<p  the network is likely to
become fragmented. The motivation for using this sampling procedure is that it mimics the
way in which the sample MCG is obtained from the (unobserved) population MCG.

We chose to use 8.0=p , 6.0=p , and 4.0=p , and extracted three samples for each,
resulting in  a total of nine different samples with average sample sizes of
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6
8.0, 106.2 ×≈〉〈

=pLCCN , 6
6.0, 104.1 ×≈〉〈

=pLCCN , and 6
4.0, 104.0 ×≈〉〈

=pLCCN  corresponding,

respectively, to the different values of p . Of these the 4.0=p  case is most interesting: the
LCC of the sample MCG contains about 6100.4 ×  nodes, roughly 10% of the estimated

61035×  mobile phone users in the country, while using using 4.0=p  results in a resample of
6

4.0 104.0 ×≈〉〈 =pLCC,N  nodes, roughly 10% of the nodes in the LCC of the sample MCG. The
results are shown in Fig. 7. Although lower values of p result in slightly lower values of

〉〈 DwO , its qualitative behavior is fairly insensitive to p , and the curves have the same
characteristic features as the one in Fig. 1D. Further, examining average overlap as a function
of cumulative weight (Fig. 7B) shows that the curves become slightly steeper as p increases.
Consequently, it is safe to assume that the behaviour of wO〉〈  is unaffected by the finite
sample. Had we access to the records of all mobile phone users in the country and not just
those of a single operator, based on Fig. 7B, we would expect an even more pronounced
increasing trend for wO〉〈 .

Fig. 7.  (A) Average link overlap 〉〈 DwO  as a function of absolute weight, the aggregated call

duration Dw , and (B) average link overlap 〉〈 < )( DwPO  as a function of cumulative weight )( DwP< ,

corresponding to the fraction of links with weight less than or equal to Dw , for different network
samples. There are altogether nine curves in each plot, corresponding to three different samples for
each of the three chosen values of extraction probability 8.0=p  (black), 6.0=p  (blue), and

4.0=p  (red). The curves corresponding to different samples for a fixed value of p  practically
coincide. While lower values of p  result in slightly lower values for the average overlap, the
qualitative behavior of the curves remains unchanged. This demonstrates that the result of Fig. 1D,
i.e., the higher the value of Dw  the higher the value of overlap O  on average, is not sensitive to
having a one-operator-sample of the underlying phone network, and it can be reproduced for sub-
samples of the original sample (original data).
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Interdependence of Weights and Topology
Fig. 8A shows overlap Oij averaged over all links with weight w, as a function of weight w,

indicating that while for small weights (w < 104) the overlap 〈O〉w increases with w as

expected, for large weights (w > 104) the overlap 〈O〉w actually decreases. This means that in

the region above w ≈ 104, the stronger the tie, the smaller the overlap. This surprising
decreasing trend can be understood by considering the link weight distribution shown in Fig.
8B, from which we find that only about 5% of the links lie in the w>104 region. To correct for
this uneven weight distribution in the paper, we plot the overlap as a function of the
cumulative link weight )(cum wP , which is the percentage of links with weight smaller than w,
and it is shown in Fig. 1D in the paper.

Since the decreasing trend for top 5% of weights concerns some 325 000 links, it cannot
possibly be attributed to insufficient statistics. The links in this region correspond to pairs of
users who devote more than three hours to each other over the investigated period. Our
measurements indicate, however, that they have a common property: These individuals
devote the vast majority of their on-air time to a single acquaintance, and the time spent with
others is negligible. Consider a link located between vertices vi and vj carrying weight wij, and
denote the strengths of the adjacent nodes with si and sj, respectively, defined as

∑
∈

=
)(, ivNjj
iji ws , where the sum index j  runs over the neighbours of node i . The smaller of the

strengths is given by ),min( ji ss  and the larger by ),max( ji ss , unless the strengths are equal.
The ratios ijji wss /),min(  and ijji wss /),max( , shown in Fig. 8C, correspond to the strengths
of the nodes measured in units of the link weight wij. For weak links (small wij) both of these
values are high, meaning that overall both adjacent nodes spend a considerably longer time on
the phone than they do talking to each other and, thus, the link connecting them constitutes
only a small fraction of their on-air time. As we move towards strong links (high wij), we find

both ratios decreasing and eventually converging to one at approximately w=104. This
demonstrates that for strong links, in the region where wO〉〈  start to decrease in Fig. 8A, the
strengths of both adjacent nodes are about as large as the link weight wij and, thus, the high
weight relationship clearly dominates the on-air time of both users. Consequently, both have
less time to interact with other acquaintances, explaining the onset of the decreasing trend for

w
O  in Fig.8A.
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Fig. 8.  (A) The overlap of link neighborhood wO〉〈  increases as a function of the link weight w (blue

circles) up-to 410≈w , revealing a statistical connection between local network topology and link
weights. A random reference (red squares) is obtained by randomly permuting the weights, thus
removing the coupling between 〉〈O and w. Surprisingly, for large weights 410≈w  the overlap wO〉〈
actually decreases in this region, apparently contradicting the weak ties hypothesis. Yet, as we explain,
that region represents a minority of the users. (B) The distribution of links weights wij decays fast,

with only 4.4% mass to the right of 410=w . This means that the decreasing part of the Oij curve

applies to less than 5% of links, which is seen clearly by plotting the overlap Oij as a function of

cumulative weight )(cum wP  as in Fig. 1D. (C) The fraction of total time (node strength) devoted by
the adjacent nodes to a link of weight wij is given by ijji wss /),min(  and ijji wss /),max( , and is here

plotted as a function of weight w. Values close to one indicate that the communication is almost
entirely focused on one individual in the 410≈w  region.
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Betweenness Centrality for Links
For a link ),( ji vve =  we can write betweenness centrality bij as

∑ ∑
∈ ∈

≡
sVv vVw vw

vw
ij

e
b

}/{

)(
σ

σ
(2)

where σvw(e) is the number of shortest paths between vv and vw that contain e, and σvw is
the total number of shortest paths between vv and vw (2). In practice, we use the algorithm
introduced in (3) to compute bij but, due to limited computing capacity, instead of using all

the nodes of the set V making up the network, we use a subset 105 nodes in the sample sVv  ∈
as starting points. The size of the set Vs is given by Ns.

Determining the nature and the position of the phase transition point
The transitions observed in Fig. 3 suggest two important questions: How does the position of
the critical threshold pc depend on the size of the system?  Are the transitions genuine phase
transitions or finite size effects?  In order to answer these questions, we carried out finite size
scaling (FSS) for all four different thresholding schemes (remove min wij, min Oij, max wij
and max Oij links).

In many large systems studied by statistical mechanics, from gases to magnetic materials,
the system is considered infinite in the number of its constituent elements. Different quantities
of interest can be expressed in terms of the correlation (connectivity) length ξ of the system,
which in the vicinity of a phase transition diverges like ξ∼|p-pc|-ν, where ν is the critical
exponent for correlation length. However, in a finite system, the correlation length is limited
by the system size, and the divergence becomes rounded. Consequently, other quantities
related to the correlation length also show a rounded signature of the divergence, but never
actually diverge due to finite N (4), as demonstrated for path length in Fig. 9. In general, the
location of the transition pc depends on the system size as

| pc(N) – pc(∞) | ∼ N−χ, (3)

where )(∞cp corresponds to the extrapolated value in the thermodynamic limit as N→∞. Here
the value of the exponent χ is related to ν and it quantifies how changing the system size
affects the position of the critical threshold, whereas the extrapolated value )(∞cp  reveals the
nature of the transition: If 1)(0 <∞< cp  there is a real phase transition but, on the other hand,
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if 1)( =∞cp  there is no actual phase transition, and the observed signature is caused by the
finiteness of the system (5).

We use two different sampling techniques to produce systems of different size N. In the
first approach, we choose randomly one node in the initial network as a source node vs and

extract a radius l neighborhood of this node, including all nodes, and links between them,
which are at most a distance l from vs (less than l links from vs). The size of the sample

depends exponentially on the extraction depth l, so that increasing the value of l enables us to
extract larger samples, although the realized sample size N will depend on the starting node vs
due to the non-homogeneous topology of the network. We call such a sample an extract. In
the second approach, we generate a sample of the original network by mimicking the process
responsible for generating the network. Consider the original network to represent the true
underlying social network of which we see only a part, since phone calls are just one form of
social interaction. We then assign an occupation probability p to each node in the network,
corresponding to the probability that this node is governed by the operator and, thus, belongs
to our sample. This means that the probability for a given node to belong to the sample, i.e. to
be occupied, is an independent random trial and does not depend on whether its neighbors are
occupied. In this sampling scheme varying the node occupation probability p results in
different sample sizes, just as varying extraction depth l does in the extract sampling scheme.
The original network corresponds to p=1, whereas if p<1 the network is likely to become
fragmented, in which case we take the largest connected component (LCC) as our sample. A
sample obtained using this second method is called a resample.

To carry out FSS we need to know the size of the system N and the location of the
transition )(Npc  for this finite system. Having several )(, NpN c  point pairs, corresponding
to different system sizes, allows us to extrapolate the value of )(∞cp . The system size N is
just the number of nodes in the given sample and can be obtained easily, but finding the value
of )(Npc  is a bit more laborious in practice. In principle, we can find this from the behavior
of susceptibility, defined as ∑∑=

s
s

s
s snsnS /2 , where ns is the number of clusters, per

lattice site, containing s sites and the LCC is excluded from the sum, but in practice we
measure ∑

s
s sn 2 , which behaves similarly to S. Although S diverges for N→∞ at the

transition point, in practice it is rather noisy even for medium size systems, making it difficult
to pinpoint the location precisely. A more robust technique is to use the smoother,
monotonically decreasing order parameter, defined as the fraction of nodes in the LCC and
written as ∑=

s
sLCC snR . LCCR  is expected to vary most rapidly at the threshold - in fact

fRLCC ∂∂ /  usually diverges in an infinite system. We can find the location of the transition by
computing this derivative numerically and by identifying its steepest descend point with the
transition point, which should coincide with the point of divergence for susceptibility. This
method works better, but the numerical derivative is not sufficiently robust for smaller
systems.
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Fig. 9.  Rounded signature of divergence of average shortest path length 〉〈l due to finite system size.

The green (◊), red (�), and blue (ο) curves are associated with system sizes 5104.4 ×≈N ,
6104.1 ×≈N , and 6103.3 ×≈N , and they were obtained using resampling extraction with node

occupation probabilities p=0.40, p=0.60, and p=0.90, respectively. For each value of node occupation
probability p we sampled a few systems, carried out the thresholding for each of them, computed the
average 〉〈l , and then finally smoothened the plot with a moving window average. The critical point
fc moves to the right as the size of the system increases and, since there is no phase transition in this

case, we have 1→cf  as ∞→N . Note that the starting value of 〉=〈 )0( fl  is highest for the
smallest system, because the networks are more tree like there as, relatively speaking, more links are
missing from small than large samples, suppressing the small world effect of short paths.

Fortunately, Eq. 3 is valid for every reasonable definition of a percolation threshold for
finite large systems, and it is only the proportionality constant that is different for different
definitions of the onset of percolation (5). It turns out that in this case the most reliable results
are obtained by manually determining the transition point )(Npc , denoted in the text with

)(Nfc , from plots of order parameter LCCR  vs. the control parameter f. We then make a of
plot )(Nfc  vs. 1/N and fit, in the sense of least sum of squared error, a second order
polynomial to the data. The transition point in the infinite size limit is extrapolated from the y-
intercept of the fit. In some cases the coefficient of the second order term is close to zero, so
that the fit effectively is linear. In most cases, however, the fit is clearly curved, indicating
that the exponent x is different from -1. Theoretically, the inclusion of the second order term
can be justified as a correction to the leading scaling behavior. The correction vanishes as
f→fc, but its contribution may be significant even if || cff −  is small. We use this method to

obtain sets of estimates of )(∞cf  for different thresholding schemes and sampling techniques
using bootstrapping, in which we randomly choose half of the points to be included in the
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bootstrap sample, and find out the value of )(∞cf  using only the points in the bootstrap
sample. Repeating this 10000 times gives a distribution of the estimates of )(∞cf . We take
the value )(∞cf  as the mean of the bootstrap distribution, and the error bounds are taken as
the standard deviations of the )(∞cf  distribution (6).

The results of finite size scaling are given in Table 2. From the extrapolated values it is
clear that we have phase transitions as fc(∞)≠1 for descending thresholding, and the values are
different for weight-driven and overlap-driven thresholding schemes. The intervals of
plausible )(∞cf  values, taken as the region that is one standard deviation from the mean, are
slightly different for extracts and resamples, but part of these intervals coincide. Both
sampling techniques support the idea that )(∞cf  for descending weight thresholding lies in
[0.83,0.84], while )(∞cf  for descending overlap thresholding lies in [0.66,0.67]. Put together,
these result fully support the existence of a phase transition for these thresholding schemes.

The results for ascending thresholding are not quite as clear. The coincidence intervals of
extracts and resamples for weight and overlap thresholding are [0.89,0.92] and [0.93,0.97],
respectively. In the latter case of ascending overlap thresholding, 1)( =∞cf  is contained
within one std of the mean for resamples and within two stds of the mean for extracts,
suggesting that instead of a phase transition we most likely have a finite size effect. For
ascending weight-driven thresholding 1)( =∞cf  is not included within two standard
deviations of the mean. However, there are two important practical aspects to be kept in mind
when interpreting the results for ascending thresholding. First, the behavior of the order
parameter LCCR  as a function of the control parameter f is noisier for ascending than
descending thresholding, with the effect that estimating the finite thresholds fc(N) is more
prone to errors in the ascending scheme. This is a consequence of the structural properties of
the studied network. Second, the manual estimates of fc(N) may have a slight downward bias.

Since )(Nfc  must lie in the [0,1] interval, one would not estimate 1)( >Nfc  for any sample
as this does not have any physical meaning. Thus, we conclude that the ascending overlap-
driven thresholding exhibits no phase transition; In the case of ascending weight-driven
thresholding the transition point is dramatically shifted upward, and is compatible with the
assumption of no transition for 1<f .

Overall, the network’s response to removing weak links is qualitatively different from the
response to removing strong links, but quite independent whether we use weights wij or
overlap Oij. Our results also suggest that the transition observed for removing strong links
first is a finite size effect (fc=1), whereas the transition for removing weak links first is a

genuine phase transition (fc≠1). This means that the observed qualitative difference between
weak and strong links is not a consequence of using the given, finite size sample, but
demonstrates that weak and strong links are qualitatively different regardless of the size of the
system.
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Scheme n fc(∞)

DW (extract) 17 0.80±0.04
DW (resample) 21 0.85±0.02
DO (extract) 17 0.62±0.05
DO (resample) 21 0.69±0.03
AW (extract) 17 0.89±0.03
AW (resample) 21 0.91±0.02
AO (extract) 17 0.92±0.05
AO (resample) 21 0.98±0.05

Table 2. A summary of finite size scaling (FSS) results. The key to the different thresholding schemes
is the following: A = ascending (remove max links first), D = descending (remove min links first), W
= weight driven thresholding, and O = overlap driven thresholding. The words extract and resample in
parentheses refer to extracted and resampled samples, respectively, on which the FSS is based. The
number of available samples, after the smallest ones were discarded, is denoted with n. The number of
samples used in each bootstrap realization is n/2, and the )(∞cf  is the value of the percolation
threshold extrapolated in the thermodynamic limit as ∞→N .

Fig. 10. Main panel: One realization of a bootstrap sample for descending weight-driven thresholding,
using an extract sample, and the corresponding second order polynomial fit to it. Inset: A linear fit to
the same data. Both fits yield practically identical results. The extrapolated value )(∞cp for this
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particular sample is approximately 0.78. Since )(∞cp  is clearly less than unity, this corresponds to a
genuine phase transition. In the case of no transition we would have 1)( ≈∞cp .

Spreading model
Considerations of information flow lead us to formulate a simple model in which the
spreading probability from an infected node vi to its nearest susceptible (non-infected)
neighbor vj was made proportional to the link weight wij. Introducing a constant of
proportionality x, we write the time independent probability of passing information from vi to
vj as Pij=xwij, where increasing x results in a higher spreading probability. The most obvious

choice is to set )(max/1 ijij
wx = , in which case for the globally strongest link we have Pij=1,

and for all others Pij<1. While this is a reasonable choice, it results in extremely long running
times for the simulation. The reason for this is the highly skewed weight distribution P(w), so
that normalizing with the globally maximum weight, which can be seen as an outlier, results
in very low transmission probabilities for most links, requiring a large number of trials before
any macroscopic spreading takes place. This problem is amplified by the fact that the
simulations, both for empirical and random network, should be carried out for an ensemble.

We can circumvent this problem by increasing the value of x, which speeds up the
simulations without affecting the qualitative behavior of the system and, thus, it can be seen
as a rescaling of the time axis (Fig. 4, A and B). This introduces a cut-off *w  for the
transmission probability Pij, below which it is linear with respect to wij, and unity for

*wwij ≥  (Fig. 11). But how should one choose the value for x or, alternatively, for the cut-off
*w ?  While the location is to some extent arbitrary, a range of values suggests itself using the

following reasoning. For choosing a suitable value for *w , let us deal in terms of the
cumulative weight distribution )(wPcum , and choose a value for )( *wPcum  instead. The first
requirement is that the relationship ijij wP ~  should be valid for at least half of the links, since
otherwise we can hardly say that the two are proportional, and this gives us a lower limit

5.0)( * >wPcum . Since we are interested in the effect of the coupling between weights and
topology on a dynamic process, we will stick to a region of link weights in which this
observed coupling holds, and from Fig. 1D we see that this is the case up to 95.0)( ≈wPcum ,
giving an upper limit of 95.0)( * ≤wPcum . Within the lower and upper limits, we would like to
have as high a value of )( *wPcum  as possible, but also to ensure that we stay away from the
region with anomalous behavior (overlap decreasing as a function of weight, a phenomenon
that may be specific to the mobile phone network). These heuristics lead us to choose

90.0)( * =wPcum , which for the studied period of 18 weeks corresponds to 3867* =w
seconds, i.e. a little over an hour, or 4* 1059.2/1 −×≈= wx 1/s. With this choice, the intended
relationship ijij wP ~  holds for 90% of the links, while for the strongest 10% of the links the
transmission always takes place. It turns out, however, that the qualitative nature of the
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spreading results is fairly insensitive to the precise value of x, i.e. the weight permuted
network performs better at spreading than the empirical network for different values of x.

Fig. 11. The transfer probability Pij as a function of cumulative link weight )(cum wP , the fraction of

links with weight less than w. Using the value of 4100.3 −×≈x  results in a cut-off at 90.0* ≈w , and
thus the intended relationship Pij~wij applies for 90% of links.

Note that although the cut-off was introduced for computational purposes, its existence
may, in fact, be a desirable property. Common sense tells us that some pieces of information
are more important than others or, in the context of gossip, some pieces of gossip are juicier
than others. Lowering the cut-off point *w  means that we have more links with Pij=1, such
that if vi has access to information, it will always pass it on to its neighbor vj as long as

*wwij ≥ . For lower cut-off points this will be true for an increasing number of links in the
network, and soon rumors will spread like wildfire.
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