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SUPPLEMENTAL RESULTS

MODEL SIMPLIFICATION
At sufficiently low cell densities initial conditions 12 imply, that all terms
proportional to the concentration of free extracellular ligand can be safely neglected in

Egs. 2-5[1] to obtain

dL,/dt~k,(n/N,)C,, (S1)
dC, /dt ~—(k, +k )C, +k.C,, (S2)
dC, [ dt ~ k,C, +k,(Ry —C)L, (k. +k, +k, )C,, (S3)
(VN )dL, ! di ==k ; (R — C,)L; + k,C; =k, (V,N )L, . (S4)

Numerical tests using the base line parameters listed in Tables 1-2 illustrate that this
neglection is justified for cell densities up to10'" cells/l (not shown). Furthermore, initial

conditions 12 imply thatk,C, <<k C,, at sufficiently short times. Neglecting the term
k,C, in Eq. S3 and introducing the fofal number of intracellular ligand molecules per

cell, 7,, we obtain the autonomous nonlinear system

dC,/dt =~ k,(C,—C_[¢,))(C. -C.[¢,]), (S5)
de,ldt ~—(k, +k,)C, —k,({,-C,) (S6)
where
ky =k, (N V,), (S7a)
K, =k +k, +k,)/k (S7b)
and
Cl]= (R, +K, +0,)+((R, ;LKM +0,)" —4R 0 )"? ’ (S8a)
Cll= (R, +K, +.)—((R, ;KM +0,)" —4R 0 )" (S8b)

are the roots of the quadratic equation

C!—(R,+K, +0)C,+Rl,=0.
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Eqgs. S5-S6 are similar to the equations of enzyme kinetics [2] and can be
similarly analyzed using the total quasi-steady state approximation [2,3]. Indeed, Egs. S5
and S8a,b are formally the same as the equations for the enzyme-substrate complex in

irreversible Michaelis-Menten kinetics, with R, and ¢, playing the respective roles of

total enzyme and substrate concentrations [2].

THE TOTAL QUASI-STEADY-STATE APPROXIMATION
Initial conditions 12 imply that during the initial transient we can substitute
¢, =/, mto Eq. S5 to obtain
dC, /dt ~ k,(C; = C_[L ,1N(C; = C,[£ 4 ]). (S9)
The solution of this Riccati equation is

_C I C 1= C)+ C L NCe —C e ])e

C ... = , S10

PITA (C.[£.]1-Cu)+(Cu—C[0.])e" (510)
where

t =k (C L0 - C 0=k ((Ry + Ky +£,)> 4R 0, ). (S11)

Self consistency requires that the fractional decrease of /,(¢) during the initial transient
should be small [2]

e=(0n—0,(t0))/ 0 <<1. (S12)
Using Eq. S6 to effect a first order McLaurin expansion of ¢, (¢, )and noting that

0<C./?,.<1 we find

ex(k, +k, )Cull+k,0-C./l )]t <(k +Fk, +k,)t.. (S13)
This entails that the validity of the initial transient approximation is guaranteed by the
condition

(k. +k, +k,)t. <<l1. (S14)

It is noteworthy that the baseline estimates listed in Tables 1 and 2 satisfy inequality S14.
A more detailed analysis of the validity of inequality S14 is given in a subsequent

section.
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Eq. S10 implies that C,(¢) decreases and in a time of order #,. approaches the
minimal asymptotic value implied by the initial conditions, C [/ ], which signals the

onset of a quasi-steady state (QSS) such that
Cch[gi]’ t>tc (SIS)

di;/ldt=—(k, +k,)C_[{;1-k, (£, =C_[{;]) t=t,. (S16)

hr c

Inequality S12 warrants that Eq. S16 can be solved subject to the initial condition
U, =0, t=t.. (S17)
Equations S16-S17 imply that the QSS time scale is [2]

- 2 , (S18)
(k. +k )C L]k, (L —C [L.])

so that the ratio of time scale of the induction period prior to the QSS, .., to the QSS time

scale is approximately

telt, =[(k, +kp C_[Ln]/ ) +ky (= C [LW]/0 )]t ~&. (S19)

hr

Inequality S14 therefore guarantees the validity of Eq. S16 even prior to steady state,

t <t., thereby justifying the solution of this equation subject to the true initial conditions

(Eq. 14).

Moreover, these results can be used to obtain corresponding estimates for free
extracellular ligand (Eq. S1) and surface bound ligand (Eq. S2). Since the transient phase
ends before significant sorting occurs, only the steady-state value of the internalized
complex enters the estimates of surface complex

C, ke & j C,(s) e" ™ ds x k e " Hh j C [, (s)]e™ ™ ds, (S20)
0 0
and degraded ligand in the medium

dLy, /dt =(n/ N )k, C, +k, (£, ~C))=(n/ N )k, C_[¢,]+k, (¢, —C_[£,])). (S21)

VALIDITY OF THE TOTAL QUASI-STEADY STATE APPROXIMATION

Rewriting S11 in the expanded form

t =k Ky +2K, (R +0,)+ (R —£,) )" (S22)
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illustrates that ¢ is a bounded function in the (¢ ., R,,) plane and since it is continuous

has a maximum in any closed set RxR. The partial derivatives are

atc KM +(Ri0_’€i*)

R, k(K2 42K, (Ry+£,)+(Ry—£,)° ) (823)
and

ot K, (R, —/.

Mic* o kl(Kfl +2K,, (A;{io —(MI(;) + 1(1)3[0 - gi*)2)3/2 ' (S24)
The conditions for extrema are therefore

Kar B =620 (S25)
and

K, —(R,—1.)=0. (S26)

This has no solution, implying that the maximum is on the boundary. It is easy to verify

that the maximum is attained atR,; = ¢,. = 0. Thus,
te(lmRig) <1(0,0) = (k, +k, +k,,)" (S27)

and inequality S12 is guaranteed by the purely kinetic criterion

kx + khr + khl

=k +k +k )t.(00)=—"——"—"=
= (k, hr w)tc(0,0) kr+kx+k

<<1, (S28)

which is valid whenever dissociation of endosomal complex is much faster than the
elimination of internalized ligand by degradation and recycling. Moreover, inequality S14

can also be satisfied even when x4 = O(1), provided thatz =¢.(/ ., R,,)/t.(0,0) <<1. The

later inequality is valid for a wide range of initial ligand loading and endosomal receptor

numbers (Figure S1).

APPROXIMATE LIGAND TIME-COURSE CURVES

The complexity of Eq. S8b does not allow for an explicit closed form solution of the total
quasi-steady state rate equation (Eq.S16). To that end we now proceed to simplify the
quasi-steady state concentration of endosomal complex (Eq. S8b) in zones I-I1I ad

defined by inequalities 20-23 (Figure 4).
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Zone |
Inequality 20 implies that [2]
RiO'gi

Cl[l. ]~ <</l S29
—[ 1] KM +Kl i ( )
t ~k(l.+K,) . (S30)
Substituting S29 into S16 yields
2
dr, e ~~(k, + ko, O[]~y £, =~ Sl (831)
l,+K,,
where
ky =k, +ky )Rio +ky Ky (S32)

When /7, << K, , inequality 20 reduces to the K,, >> R,, limit of inequality 21, studied
below. When 7 . >> K, + R, , inequality 20 reduces to inequality 23, also studied below.
The unique limit of inequality 20 is defined by /.. = K,, >> R, in which case S31 cannot

be integrated explicitly. However, we can approximate the initial apparent dynamics by

linearizing the tQSSA results around the initial condition ¢, = ¢ .. Linearizing S31

dt, 1dt~—0, /1, 1, =t E ($33)
k, +kyl .
and integrating we find
0 mle (S34)
Linearization of S29 yields
Ce)x—Tobi o Rlie | (S35)
K,+l. \K,+/0,.
Substituting S35 into S20 and S21 we find, respectively
—t/t; (ko k)t
CS ~ kxcf[f[*](e el ) (836)
k, +k —t;
and

1/ ~t/1
(e mky 0 e

l

dLy., / dt R k(L + Ky )
(n/N ) L +Ky,

with the solution
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L
e
UXEAVPATS

Substituting S36 into S1 yields

t k., +k,

(IN e (L + Ky )k, +h, — 1]

LO krkaiO 1- 67”[1 1- e—(k,+k,)t
) .

Zone |l
Inequality 21 implies that [2]

C (1]~ —Rule
K, +R,

ti' =k (Ry+K,,) .
Substituting S39 into S16 yields
v, ldt=—t3't,, ty=(K, +Ry)/k,
with the solution
0,0 e
Substituting S39 and S42into Eqs. S20-S21 yields, respectively

_ ke C_ [0, ]! — ekt

¢ 1
k, +k —ty

N

and

dL

deg

k, R, +k, K
/dt~(n/N, )[MJéi*e"/tlf
R, +K,,

with the solution

Lieg < ki Rig + ki Ky t(l—ey.
(n/ N )l R, +K,

Substituting S43 into S1 yields

L k.k Ry l—e ! g by
: :

(MINDLe Ry + Kk, +h —tH 1k,

(S37)

(S38)

(S39)

(S40)

(S41)

(S42)

(S43)

(S44)

(S45)
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Zone 1l
Inequality 22 implies that [3]
Clt]=t;,
t =~k (Ry—"1,) .
Substituting S46 into S16 yields
i, /dt~—(k, +k, ),
with the solution

- —(ky+ky, )t
l, =/l ,e .

Substituting S46 and S48 into Eqs. S20-S21 yields, respectively

kxf - (e—(kX+kh,,)t _ e—(k,.+k,)t)

Tk o+k, —(k, +k,)

and
ALy, dt = (n! N )yl = (n/ Nk, £ e 50
with the solution

Lieq ~ ke (1— oVt .
(n/NA)gi* kx+khr

Substituting result S49 into S1 yields

Lo krkx {1 — e_(kx+khr' ) 1- e—(k,+k,)t

L IN,) k otk —k +k )\ k. +k, Kk +k

Zone IV
Inequality 23 implies that [3]
C[l.]=R, ,
to =k (l.—R,) .
Substituting S52 into S16 yields
0, = (ky —(k, +k, )Ry — k!,

with the solution

(.~ [gi* +(1_MJRioje—kh;t _'(1_ k. +k, ij‘o-
khl khl

|

(S46)

(S47)

(S48)

(S49)

(S50)

(S51)

(S52)

(S53)

(S54)
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This equation is only valid while 7, satisfies inequality 23 and C, = R,,. Eventually

!, = K,, + R and the approximation breaks down.

ON THE RATIO R, /K,

It is straightforward to verify that Eq. 16 is equivalent to the hyperbolic relationship

Rio(gi_ci) _ RiONAVeLi

. _ . (555)
Ky,+(,-C) Ky, +N/J,L

Eq. S55 implies that K, corresponds to the free ligand number for which half of the
binding sites are saturated, C; = R,,/2and C, /¢, =R, /(R,, + 2K, ). Thus, the fraction
of ligand that is bound at half saturation increases with the ratioR,, / K, . For a general
ligand concentration(N ,V,)L; =aK,, andC,/(, = R, /(R,, + (¢ + 1)K, ), directly
illustrating that the fraction of bound ligand always increases with the ratio R,,/K,, and

tends to unity asR,, / K,, — .

INTERNALIZATION KINETICS IMPACT ENDOSOMAL STABILITY

Following [4] we replace the dynamical model of surface kinetics and
internalization by a constant prescribed flux of growth factor-receptor complex,
Cs zRSOLO /(Kd +L0) . (856)

This reduces our model to

C, =k,C, +k,RL, ~k.C, ~(k, +k,)C; , (S857)
(VeNav)Li = _k}Rle +k;'Cl _khl (VeNav)Li . (858)
R =-k,RL +kC,—(k,, +k,)R,. (S59)

Note that this reduced model neglects the internalization of free receptors, and therefore
underestimates the number of endosomal receptors. As predicted by our analysis the

reduced model underestimation the stability of endosomal ligand (Figure S.2).
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Specific concentration of intracellular receptors

0 5 10 15 20

Specific concentration of intracellular ligand

Figure S1 Normalized binding time scale 7 =¢.(/./K,,,R,,/ K,,;)/t-(0,0) asa

function of specific endosomal ligand 7,/ K,, and receptor R,/ K,, concentrations.

Color code: (White) 7 <0.1 , (gray) 0.1 <7 <0.25 and (black) 0.25<7<1.
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10nM EGF 10nM TGFa
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Figure S2 Fraction of bound endosomal ligand at the end of 180 minute incubations with
10nM of EGF, TGFa, Y13G or E40A. (Grey) Egs. 1-6, (black) Egs. S56-S59. Both sets

of simulations employ the parameter values listed in Tables 1-2.
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