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SUPPLEMENTARY MATERIAL We include below some physically motivated ar-
guments which indicate how ordering (folding) different parts of the protein heterogeneously
lowers the thermodynamic barrier.

Consider making random energetic perturbations on the contact energies of an ini-
tially homogeneous idealized system with free energy barrier Fhomo and folding rate
ko exp(—Fromo /T'). If the total native energetic variance is AE2, the variance at the tran-
sition state is = Q*AFE2. Approximating the transition state as an ensemble of states
with uncorrelated energies (1), and considering only the effects of changing native inter-
actions, the energy will always decrease twice as much as the entropy times the tem-
perature under the influence of heterogeneity, and thus the free energy barrier decreases:
§F(T) = 6E(T) — T6§S(T) = —Q*AEX)T — Q*AE2/2T = —Q*AE2/2T , which increases

the rate as

(1)
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This crude argument yields essentially the same result as a more detailed analysis (see
eq. (6) of the text), thus even for an initially fully symmetric funnel, introducing arbitrary
heterogeneity lowers the barrier.

Consider next the free energy change in making equal and opposite perturbations on the
energies of two contacts with different formation probability, say @1 > @2 (2). The free

energy change 6 F in perturbing a contact ¢’s energy is @,d¢;, analogous to the free energy



change in a magnet due to the coupling of a spin with its local external field: 6 F = —m;dh,;.
Neglecting explicit changes in the entropy is acceptable (c.f. discussion before eq. (5)). So
the change in the free energy barrier §AF1 is roughly Q18¢ — @Q,8e (letting @1 = Q2 = 0 in
the unfolded state). Thus if Q; > Q,, SAF! < 0 if e < 0, i.e. if the more probable contact
is made stronger (more negative), which in turn increases its probability of formation. So
the barrier is lowered by increasing the dispersion in contact formation. For a large number
of contacts the first order change in barrier height is SAFt = M Q,6¢;, which is a sum of a
large number of random uncorrelated terms, so §AF is Gaussianly distributed. The mean

of this distribution is zero since:
M [ —
SAFt = ZQi&i = MQ ée (2)

and Q = (1/M)YMQ; = Q and e = (1/M) XM 6¢; = 0. The standard deviation
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scales like v/N since M = zN. Similar arguments of the effects of heterogeneity on the
barrier were considered in (3).

Another argument makes use of thermodynamic perturbation theory (4). Consider a Go
model with M contacts, whose configurational states are perturbed in energy by a random
contribution V; = 6E; so that the new energy of state 7 i1s E; = E? 4+ V;. Let the native
energy be unchanged: éE = 0 in the native state. Then the change in free energy to second

order in V 1s
5AF(Q):V—L<(V—V)2> (4)
where

V=13 Veexp(~B2/T) = (6B}, (5)
ceQ

is calculated by summing over all configurations ¢ having ¢ native contacts. It is instruc-

!
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tive to show that (§E) = §AF mentioned above. First note that the average occupation

probability of contact z is
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where 6(z,¢) = 1 if contact ¢ is made in configuration ¢, and é(z, c) = 0 otherwise. Next note

that
oF 0 1 LOE
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de e TA) =72 5o (7)
and since the energy of conformation c is a sum of its contact energies: E. = 3 .. ¢,

0E./0¢; = 6(z,c) and thus OF/0¢; = @, as noted above. Finally then
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which was to be demonstrated. ¢y in the derivation is the native configuration and thus the
final sum is over native contacts. Again, the typical value for the first order perturbation
scales like v/N. On the other hand, the second order term in (4) is proportional to (§V?)
and scales like N. Thus the free energy change due to random perturbations in the native
energies is negative in the thermodynamic limit.

That higher order terms do not reverse the trend in barrier height can be ensured by
the Peierls-Bogoliubov inequality F' < F, 4+ (V)_ where F, is the free energy in absence of
the random component and V is the random part of the Hamiltonian averaged over the
unperturbed states, which is just the first order term in eq. (4). Thus the transition state
free energy (per volume) F(Q!)/N is always less than unperturbed free energy F,(Q)/N
in the thermodynamic limit; since F/(0) = F,(0) in the unfolded state, the barrier is always
lowered.

The effects of correlations between energetic perturbations and contact probabilities, as

well as between energies and loop lengths, are described in the body of the paper.



CONFIGURATIONAL ENTROPY LOSS TO FOLD TO A GIVEN TOPOLOGI-
CAL STRUCTURE We can write a very general form for the change in entropy due to

contact formation Sgonp ({@:(@)}{Q:(0)}), to go from {Q.(Q = 0)} = {0}, to another state
having {Q:(Q)}, as

BOND_z/DQ CSCACINE (9)

Here s,(4;,{Q;(Q)}) is the entropy loss to form contact 7 having sequence separation ¢;, in
the presence of the contact pattern {Q;(Q)}, which is itself parameterized through @. Each
5i(4:;,{Q;(@)}) in eq. (9) is functionally integrated along the M-dimensional path specified
by {Q:(Q)}. However the entropy as a function of the set {@;} must be a state function,
meaning that the value of the integral depends only on the end points and not on the path

taken. By ensuring zero curl, the condition for path independence is obtained:

0s; 0Os; 0s;

BQ (Eja{Qk}) Q (ZH{Qk}) for 7‘7&.7 (10)

Then the entropy difference only depends on the initial and final states and can be rewritten

as a regular integral:

Saomn ({Qi(@)}I{0}) = / dQ: i (6:,{Q)}) - (11)

We use an approximate formula for s; by introducing an effective loop length fere(4;, {@;})
into ! 5;(4:,{Q;}) = In(a/4ers )%, and we satisfy eq. (10) by using a Hartree style ansatz for
the functional form of Zggs:

EEFF(E'U {Qk}) = f(gz)g({Qk}) = f(&)g(% Z Qk) (12)

k

We ignore here possibly important changes in the power of the ideal chain exponent 3/2, since we
have not found a simple way to incorporate an exponent dependent on {@;} and to simultaneously

satisfy eq. (10).



so that the loop length is decreased by a function of the mean of the contact density field,
9(@). The condition Lepr(4;, Q@ = 0) = £; gives f(4;) = £; and g(0) = 1. The condition that
Lopr(£;,Q = 1) ~ 1 gives g(1) ~ 1/£ (since g(Q) cannot depend on £;), where £ = (1/M) ¥, 4;.
We approximate the effective loop length Zgrr(4;, @) at @ in the spirit of the Flory mean-field
result (5,6) by dividing the total loop length £; by the approximate number of bonds in the
loop =2 £Q), so that

4
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which has the mean-field behavior for large ¢; and also has approximately the right limiting
behavior as () — 0 and ¢ — 1. The line of argument followed here is accurate only for weak
dispersion in loop lengths; for larger values of 64; modifications must be made because of
inaccuracies at large values of . The coefficient a in s; is determined from eq. (11) by the
condition that the total entropy loss to fold must be the unfolded entropy: Sgonn({1}/0) =
—Ns, where s, is the entropy per monomer in the unfolded state. Substituting feer(4;, Q)

and a into s;, eq. (11) gives the contact entropy loss to form the state {Q;}:

Soonn = —gM ((5Q 810.) + Sur(Q, ) (14)
where
Sur (27) = 2@, + @22
_Zi [1+@-1)Q|n[1+(-1)Q (15)

is only a function of the mean field @ and mean loop length £, and

(6Q 81nt) = —Z Qi — Q) (Int —In?) (16)

is the correlation between the fluctuations in contact probability and log loop length. By
eq. (14) the entropy is raised above that of a symmetrically ordering system when shorter

ranged contacts have higher probability to be formed; this effect lowers the barrier. As a



check, when Q; = @, 4 = £ and the limit £Q > 1 is taken, the bond entropy in eq. (14)

becomes

3 _
SAER D = — M S1(Q,E - 00)

g3MQ< 25,
2 3z

+1n Q) , (17)

which is the Flory result derived earlier in the mean-field limit (5,6).
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