Legends for Supplementary Figures Johansson et al.

Figure S1. Developmental stage of lethality of Pof^{D140}/Pof^{D140} ; $ci^{57g}/0$ offspring. Embryos (n=845) from the cross Pof^{D140}/Pof^{D140} ; $C(4)RM sv^{spa-pol}/0 \oplus \Im \times Pof^{D140}/Pof^{D140}$; $ci^{57g}/ci^{57g} \oplus \bigoplus$ were followed through development and counted as embryos, first instar larvae, third instar larvae, pupae and adults. The percent survival is shown in red. As controls embryos (n=645) from the cross Pof^{D140}/Pof^{D140} ; $C(4)RM sv^{spa-pol}/0 \oplus \Im \times ci^{57g}/ci^{57g} \oplus \bigoplus$ were followed through development and shown in blue. Considering the lethality in the control experiment to be normal for this experiment, the normalized survival of offspring from the cross Pof^{D140}/Pof^{D140} ; $C(4)RM sv^{spa-pol}/0 \oplus \Im \times Pof^{D140}/Pof^{D140}$; $ci^{57g}/ci^{57g} \oplus \bigoplus$ is plotted in black. The results suggest that although the majority of the expected 50% Pof^{D140}/Pof^{D140} ; $ci^{57g}/0$ offspring die as embryos or early larvae a small proportion survive until pupal stages.

Figure S2. Statistical analysis of gene expression in *Pof* mutants and *HP1* RNAi compared to wildtype. (*A*) Microarray analysis showing the median level of mRNA from genes on the 4th chromosome in *Pof*^{*D2*}/*Pof*^{*D2*} mutant first instar larvae as a function of the median levels in wildtype in log₂ scale. Genes for which there were reduced amounts of mRNA (below dotted line) are marked with filled circles and genes for which there were increased amounts with open circles. (*B*) Mean change in gene expression for each chromosome arm, $Pof^{D2} -$ wildtype expression (log₂ scale). Squares indicate the mean value and whiskers indicate 95% confidence interval. ANOVA tests for all chromosome arms were performed on log₂ differences between median wildtype and median mutant expression. (*C*, *D* and *E*) A significant ANOVA (p<0.05) was followed by Duncan's multiple range test, $Pof^{D2} -$ wildtype. Values in red are significant at p < 0.05. (*D*) Results from Duncan's multiple range

test, Pof^{D119} – wildtype (see Figure 3A, B). (*E*) Results from Duncan's multiple range test, *HP1* RNAi – control (see Figure 3C, D). (*F*) Correlation plot of Pof^{D119} and *HP1* RNAi expression change values (log₂ scale). Regression line is indicated in red.

Figure S3. POF binding of chromosome 4 from position 200kb to position 800kb at 10-kb resolution (according to annotation release 4). The Y-axis indicates enrichment plotted as percent of input. Enrichment using a MOCK antisera or no antisera was determined at all positions and never exceeded 0.1%.

Figure S4. POF binding to d4 (distal-4th chromosome) on translocated 4th chromosomes. (*A*) Examples of the four staining classes used in the analysis. The chromosomes were stained with POF (red) and MSL3 (green, to verify the cytology) and counterstained with DAPI (blue). (*B*) Summary of POF binding to different translocations at different conditions.

Johansson_et_al_FigS4

В

Translocation	Breakpoints	Y-	Temp	STAINING CLASSES			
	-	chr	(°C)				
				NO	SINGLE	PARTIAL	ENTIRE
				BINDING	BAND	d4	d4
$T(1;4)w^{m258-18}$	3C4-5;	0	18	+/-	+	++	+
	h59-h61						
$T(1;4)w^{m258-18}$	3C4-5;	Y	18	+	++	+	
	h59-h61						
$T(1;4)w^{m258-18}$	3C4-5;	0	25	+	++	+	
	h59-h61						
$T(1;4)w^{m258-18}$	3C4-5;	Y	25	++	+		
	h59-h61						
$T(1;4)w^{m5}$	3C2; 101F	Y	18	++	+		
$T(1;4)w^{m5}$	3C2; 101F	Y	25	+++			
T(1;4)e15	13C; >101	Y	18	+++			
$T(1;4)B^{S}$	16A7-	Y	18	+++			
	B1;102F						
$T(1;4)w^{m258-21}$	3E5-6;	Y	18	+++			
	101F						
$T(1;4)sc^H$	1B4;101F1-	Y	18	+++			
	102D1						

+++; all nuclei show this staining class ++; a majority of the nuclei show this staining class +; a fraction (>5%) of the nuclei show this staining class +/-; occasional nuclei show this staining class